A probabilistic proof of the Vitali Covering Lemma
DOI:
Keywords:
Differentiation of integrals, covering lemmas, probabilistic methodAbstract
The classical Vitali Covering Lemma on $\mathbb{R}$ states that there exists a constant $c > 0$ such that, given a finite collection of intervals $\{I_j\}$ in $\mathbb{R}$, there exists a disjoint subcollection $\{\tilde{I}_j\} \subseteq \{I_j\}$ such that $|\cup \tilde{I}_j| \geq c |\cup I_j|$. We provide a new proof of this covering lemma using probabilistic techniques and Padovan numbers.Downloads
Published
2018-03-25
Issue
Section
Articles
How to Cite
Gwaltney, E., et al. “A Probabilistic Proof of the Vitali Covering Lemma”. Methods of Functional Analysis and Topology, vol. 24, no. 1, Mar. 2018, pp. 34-40, https://zen.imath.kiev.ua/index.php/mfat/article/view/682.