Linear maps preserving the index of operators
DOI:
Keywords:
Linear preserver problems, index of operator, semi-Fredholm operatorAbstract
Let $\mathsf{H}$ be an infinite-dimensional separable complex Hilbert space and $\mathcal{B}(\mathsf{H})$ the algebra of all bounded linear operators on $\mathsf{H}.$ In this paper, we prove that if a surjective linear map $ \phi : \mathcal{B}(\mathsf{H}) \longrightarrow \mathcal{B}(\mathsf{H})$ preserves the index of operators, then $\phi$ preserves compact operators in both directions and the induced map $ \varphi : \mathcal{C}( \mathsf{H}) \longrightarrow \mathcal{C}(\mathsf{H}),$ determined by $\varphi(\pi(T)) = \pi( \phi(T)) $ for all $T \in \mathcal{B}(\mathsf{H}),$ is a continuous automorphism multiplied by an invertible element in $\mathcal{C}( \mathsf{H}).$Downloads
Published
2017-09-25
Issue
Section
Articles
How to Cite
Ragoubi, S. “Linear Maps Preserving the Index of Operators”. Methods of Functional Analysis and Topology, vol. 23, no. 3, Sept. 2017, pp. 277-84, https://zen.imath.kiev.ua/index.php/mfat/article/view/671.