Linear maps preserving the index of operators

Authors

  • S. Ragoubi </span>Universite de Monastir, Institut pr &acute;eparatoire aux&acute; etudes d&rsquo;ing&acute; enieurs de Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia&nbsp;

DOI:

Keywords:

Linear preserver problems, index of operator, semi-Fredholm operator

Abstract

Let $\mathsf{H}$ be an infinite-dimensional separable complex Hilbert space and $\mathcal{B}(\mathsf{H})$ the algebra of all bounded linear operators on $\mathsf{H}.$ In this paper, we prove that if a surjective linear map $ \phi : \mathcal{B}(\mathsf{H}) \longrightarrow \mathcal{B}(\mathsf{H})$ preserves the index of operators, then $\phi$ preserves compact operators in both directions and the induced map $ \varphi : \mathcal{C}( \mathsf{H}) \longrightarrow \mathcal{C}(\mathsf{H}),$ determined by $\varphi(\pi(T)) = \pi( \phi(T)) $ for all $T \in \mathcal{B}(\mathsf{H}),$ is a continuous automorphism multiplied by an invertible element in $\mathcal{C}( \mathsf{H}).$

Downloads

Published

2017-09-25

Issue

Section

Articles

How to Cite

Ragoubi, S. “Linear Maps Preserving the Index of Operators”. Methods of Functional Analysis and Topology, vol. 23, no. 3, Sept. 2017, pp. 277-84, https://zen.imath.kiev.ua/index.php/mfat/article/view/671.