L-Dunford-Pettis property in Banach spaces
DOI:
Keywords:
Dunford-Pettis set, Dunford-Pettis relatively compact property, Dunford-Pettis completely continuous operatorAbstract
In this paper, we introduce and study the concept of L-Dunford-Pettis sets and L-Dunford-Pettis property in Banach spaces. Next, we give a characterization of the L-Dunford-Pettis property with respect to some well-known geometric properties of Banach spaces. Finally, some complementability of operators on Banach spaces with the L-Dunford-Pettis property are also investigated.References
C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006. MathSciNet CrossRef
M. Bahreini Esfahani, Complemented subspaces of bounded linear operators, Ph.D. thesis, University of North Texas, 2003. MathSciNet
P. Cembranos, $C(K,,E)$ contains a complemented copy of $c_0$, Proc. Amer. Math. Soc. 91 (1984), no. 4, 556-558. MathSciNet CrossRef
G. Emmanuele, A dual characterization of Banach spaces not containing $l^ 1$, Bull. Polish Acad. Sci. Math. 34 (1986), no. 3-4, 155-160. MathSciNet
G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. 58 (1992), no. 5, 477-485. MathSciNet CrossRef
I. Ghenciu and P. Lewis, The Dunford-Pettis property, the Gelfand-Phillips property, and $L$-sets, Colloq. Math. 106 (2006), no. 2, 311-324. MathSciNet CrossRef
N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. MathSciNet
R. E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, New York, 1998. MathSciNet CrossRef
P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MathSciNet CrossRef
C. P. Niculescu, Weak compactness in Banach lattices, J. Operator Theory 6 (1981), no. 2, 217-231. MathSciNet
Y. Wen and J. Chen, Characterizations of Banach spaces with relatively compact Dunford-Pettis sets, Adv. in Math. (China) 45 (2016), no. 1, 122-132. CrossRef