Fractional statistical dynamics and fractional kinetics
DOI:
Keywords:
Configuration space, Caputo derivative, Vlasov-type kinetic equation, correlation functions, Poisson flowAbstract
We apply the subordination principle to construct kinetic fractional statistical dynamics in the continuum in terms of solutions to Vlasov-type hierarchies. As a by-product we obtain the evolution of the density of particles in the fractional kinetics in terms of a non-linear Vlasov-type kinetic equation. As an application we study the intermittency of the fractional mesoscopic dynamics.References
Emilia Grigorova Bajlekova, Fractional evolution equations in Banach spaces, Eindhoven University of Technology, Eindhoven, 2001. MathSciNet
Emilia G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal. 3 (2000), no. 3, 213-230. MathSciNet
Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 30, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1961. MathSciNet
N. N. Bogoliubov, Problems of a dynamical theory in statistical physics, Studies in Statistical Mechanics, Vol. I, North-Holland, Amsterdam; Interscience, New York, 1962, pp. 1-118. MathSciNet
B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Math. 15 (1964), 239-341. MathSciNet
R. A. Carmona and S. A. Molchanov, Stationary parabolic Anderson model and intermittency, Probab. Theory Related Fields 102 (1995), no. 4, 433-453. MathSciNet CrossRef
Rene A. Carmona and S. A. Molchanov, Parabolic Anderson problem and intermittency, Mem. Amer. Math. Soc. 108 (1994), no. 518, viii+125. MathSciNet CrossRef
José LuÃs Da Silva and Maria João Oliveira, Studies in fractional Poisson measures, International J. Modern Phys. Conf. Series 17 (2012), 122-129. CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky, and Oleksandr Kutoviy, The statistical dynamics of a spatial logistic model and the related kinetic equation, Math. Models Methods Appl. Sci. 25 (2015), no. 2, 343-370. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, and Oleksandr Kutoviy, Vlasov scaling for stochastic dynamics of continuous systems, J. Stat. Phys. 141 (2010), no. 1, 158-178. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, and Oleksandr Kutoviy, Semigroup approach to birth-and-death stochastic dynamics in continuum, J. Funct. Anal. 262 (2012), no. 3, 1274-1308. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, and Oleksandr Kutoviy, Statistical dynamics of continuous systems: perturbative and approximative approaches, Arab. J. Math. (Springer) 4 (2015), no. 4, 255-300. MathSciNet
Rudolf Gorenflo, Yuri Luchko, and Francesco Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal. 2 (1999), no. 4, 383-414. MathSciNet
H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math. (2011), Art. ID 298628, 51. MathSciNet CrossRef
Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MathSciNet
A. N. Kochubei and Kondratiev. Y., Intermittency property for random point processes, in preparation, 2016.
Yuri G. Kondratiev and Tobias Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), no. 2, 201-233. MathSciNet CrossRef
Yu. G. Kondratiev and O. V. Kutoviy, On the metrical properties of the configuration space, Math. Nachr. 279 (2006), no. 7, 774-783. MathSciNet CrossRef
Yuri Kondratiev, Oleksandr Kutoviy, and Sergey Pirogov, Correlation functions and invariant measures in continuous contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), no. 2, 231-258. MathSciNet CrossRef
Nick Laskin, Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul. 8 (2003), no. 3-4, 201-213. MathSciNet CrossRef
A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I, Arch. Rational Mech. Anal. 59 (1975), no. 3, 219-239. MathSciNet
A. Lenard, States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures, Arch. Rational Mech. Anal. 59 (1975), no. 3, 241-256. MathSciNet
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics (Udine, 1996), CISM Courses and Lectures, vol. 378, Springer, Vienna, 1997, pp. 291-348. MathSciNet CrossRef
Francesco Mainardi, Rudolf Gorenflo, and Enrico Scalas, A fractional generalization of the Poisson processes, Vietnam J. Math. 32 (2004), no. Special Issue, 53-64. MathSciNet
Francesco Mainardi, Rudolf Gorenflo, and Alessandro Vivoli, Beyond the Poisson renewal process: a tutorial survey, J. Comput. Appl. Math. 205 (2007), no. 2, 725-735. MathSciNet CrossRef
Francesco Mainardi, Antonio Mura, and Gianni Pagnini, The $M$-Wright function in time-fractional diffusion processes: a tutorial survey, Int. J. Differ. Equ. (2010), Art. ID 104505, 29. MathSciNet
Mark M. Meerschaert, Erkan Nane, and P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab. 16 (2011), no. 59, 1600-1620. MathSciNet CrossRef
A. Mura, M. S. Taqqu, and F. Mainardi, Non-Markovian diffusion equations and processes: analysis and simulations, Phys. A 387 (2008), no. 21, 5033-5064. MathSciNet CrossRef
Maria Joao Oliveira and Rui Vilela Mendes, Fractional Boson gas and fractional Poisson measure in infinite dimensions, From particle systems to partial differential equations. II, Springer Proc. Math. Stat., vol. 129, Springer, Cham, 2015, pp. 293-312. MathSciNet CrossRef
Igor Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999. MathSciNet
Jan Pruss, Evolutionary integral equations and applications, Modern Birkhauser Classics, Birkhauser/Springer Basel AG, Basel, 1993. MathSciNet CrossRef
O. N. Repin and A. I. Saichev, Fractional Poisson law, Radiophys. and Quantum Electronics 43 (2000), no. 9, 738-741 (2001). MathSciNet CrossRef
V. V. Uchaikin, D. O. Cahoy, and R. T. Sibatov, Fractional processes: from Poisson to branching one, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 9, 2717-2725. MathSciNet CrossRef