Level sets of asymptotic mean of digits function for $4$-adic representation of real number

Authors

  • M. V. Pratsiovytyi </em>National Pedagogical Dragomanov University, 9 Pirogova, Kyiv, 01601, Ukraine; Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine
  • S. O. Klymchuk </em>Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine
  • O. P. Makarchuk Institute of Mathematics, National Academy of Sciences of Ukraine,&nbsp;3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

DOI:

Keywords:

$s$-Adic representation, asymptotic mean of digitsfunction, level sets, frequency of digits, Besicovitch-Eggleston sets, Hausdorff-Besicovitch dimension

Abstract

We study topological, metric and fractal properties of the level sets $$S_{\theta}=\{x:r(x)=\theta\}$$ of the function $r$ of asymptotic mean of digits of a number $x\in[0;1]$ in its $4$-adic representation, $$r(x)=\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits^{n}_{i=1}\alpha_i(x)$$ if the asymptotic frequency $\nu_j(x)$ of at least one digit does not exist, were $$ \nu_j(x)=\lim_{n\to\infty}n^{-1}\#\{k: \alpha_k(x)=j, k\leqslant n\}, \:\: j=0,1,2,3. $$

References

S. Albeverio, M. Pratsiovytyi, and G. Torbin, Singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their $s$-adic digits, Ukrainian Math. J. 57 (2005), no. 9, 1361-1370. MathSciNet CrossRef

Sergio Albeverio, Mykola Pratsiovytyi, and Grygoriy Torbin, Topological and fractal properties of real numbers which are not normal, Bull. Sci. Math. 129 (2005), no. 8, 615-630. MathSciNet CrossRef

A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1935), no. 1, 321-330. MathSciNet CrossRef

Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MathSciNet

E. Borel, Les probabilites denombrables et leurs applications arithmetiques, Rend. Circ. Mat. 27 (1909), no. 1, 247-271.

H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 31-36. MathSciNet

L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. 67 (2003), no. 1, 103-122. MathSciNet CrossRef

M. V. Pratsiovytyi, S. O. Klymchuk, Linear fractals of Besicovitch-Eggleston type, Scientific journal of Dragomanov NPU. Series 1. Physics and mathematics (2012), no. 13(2), 80-92. (Ukrainian)

M. V. Pratsiovytyi, S. O. Klymchuk, Topological, metric and fractal properties of sets of real numbers with preassigned mean of digits of 4-adic representation when their frequencies exist, Scientific journal of Dragomanov NPU. Series 1. Physics and mathematics (2013), no. 14, 217-226. (Ukrainian)

S. O. Klymchuk, O. P. Makarchuk, and M. V. Pratsovytyi, Frequency of a digit in the representation of a number and the asymptotic mean value of the digits, Ukrainian Math. J. 66 (2014), no. 3, 336-346. MathSciNet CrossRef

M. V. Prats′ovitii and G. M. Torbin, Superfractality of the set of numbers having no frequency of $n$-adic digits, and fractal distributions of probabilities, Ukrainian Math. J. 47 (1995), no. 7, 1113-1118. MathSciNet CrossRef

G. M. Torbin, Frequency characteristics of normal numbers in different number systems, Fractal Analysis and Related Problems, Kyiv: Institute of Mathematics, National Academy of Sciences of Ukraine - National Pedagogical Dragomanov University, 1998, no. 1, pp. 53-55. (Ukrainian)

Downloads

Published

2016-06-25

Issue

Section

Articles

How to Cite

Pratsiovytyi, M. V., et al. “Level Sets of Asymptotic Mean of Digits Function for $4$-Adic Representation of Real Number”. Methods of Functional Analysis and Topology, vol. 22, no. 2, June 2016, pp. 184-96, https://zen.imath.kiev.ua/index.php/mfat/article/view/635.