On the generation of Beurling type Carleman ultradifferentiable $C_0$-semigroups by scalar type spectral operators

Authors

  • M. V. Markin Department of Mathematics, California State University, Fresno 5245 N. Backer Avenue, M/S PB 108 Fresno, CA 93740-8001

DOI:

Keywords:

Scalar type spectral operator, $C_0$-semigroup of linear operators, Carleman classes of functions and vectors

Abstract

A characterization of the scalar type spectral generators of Beurling type Carleman ultradifferentiable $C_0$-semigroups is established, the important case of the Gevrey ultradifferentiability is considered in detail, the implementation of the general criterion corresponding to a certain rapidly growing defining sequence is observed.

References

J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc. 63 (1977), no. 2, 370-373. MathSciNet CrossRef

Earl Berkson, Semi-groups of scalar type operators and a theorem of Stone, Illinois J. Math. 10 (1966), 345-352. MathSciNet

T. Carleman, Edition Complete des Articles de Torsten Carleman, Institut Mathematique Mittag-Leffler, Djursholm, Suede, 1960.

Nelson Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. MathSciNet

Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Interscience Publishers, New York, 1958. MathSciNet

Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers, New York, 1963. MathSciNet

Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III: Spectral operators, Interscience Publishers, New York, 1971. MathSciNet

Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. MathSciNet

M. Gevrey, Sur la nature analytique des solutions des equations aux derivees partielles, Ann. Ec. Norm. Sup. Paris 35 (1918), 129-196.

Roe W. Goodman, Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc. 143 (1969), 55-76. MathSciNet

V. I. Gorbachuk, Spaces of infinitely differentiable vectors of a nonnegative self-adjoint operator, Ukrainian Math. J. 35 (1983), no. 5, 531-534. MathSciNet CrossRef

V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MathSciNet CrossRef

V. I. Gorbachuk and A. V. Knyazyuk, Boundary values of solutions of operator-differential equations, Russian Math. Surveys 44 (1989), no. 3, 67-111. MathSciNet CrossRef

Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. MathSciNet

Hikosaburo Komatsu, Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105. MathSciNet

S. Mandelbrojt, Series de Fourier et Classes Quasi-Analytiques de Fonctions, Gauthier-Villars, Paris, 1935.

Marat V. Markin, On an abstract evolution equation with a spectral operator of scalar type, Int. J. Math. Math. Sci. 32 (2002), no. 9, 555-563. MathSciNet CrossRef

Marat V. Markin, A note on the spectral operators of scalar type and semigroups of bounded linear operators, Int. J. Math. Math. Sci. 32 (2002), no. 10, 635-640. MathSciNet CrossRef

Marat V. Markin, On scalar type spectral operators, infinite differentiable and Gevrey ultradifferentiable $C_ 0$-semigroups, Int. J. Math. Math. Sci. (2004), no. 45-48, 2401-2422. MathSciNet CrossRef

Marat V. Markin, On the Carleman classes of vectors of a scalar type spectral operator, Int. J. Math. Math. Sci. 2004 (2004), 3219-3235. MathSciNet CrossRef

M. V. Markin, On scalar-type spectral operators and Carleman ultradifferentiable $C_ 0$-semigroups, Ukrainian Math. J. 60 (2008), no. 9, 1418-1436. MathSciNet CrossRef

Marat V. Markin, On the Carleman ultradifferentiability of weak solutions of an abstract evolution equation, Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 2: Differential operators and mechanics, Oper. Theory Adv. Appl., vol. 191, Birkhauser Verlag, Basel, 2009, pp. 407-443. MathSciNet CrossRef

M. V. Markin, On the Carleman ultradifferentiable vectors of a scalar type spectral operator, Methods Funct. Anal. Topol. 21 (2015), no. 4, 360-369. MFAT Article

Edward Nelson, Analytic vectors, Ann. of Math. 70 (1959), no. 3, 572-615. MathSciNet CrossRef

T. V. Panchapagesan, Semi-groups of scalar type operators in Banach spaces, Pacific J. Math. 30 (1969), 489-517. MathSciNet

A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1968), 1131-1141. MathSciNet

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MathSciNet CrossRef

A. I. Plesner, Spectral theory of linear operators, Izdat. ``Nauka'', Moscow, 1965. MathSciNet

Ya. V. Radyno, The space of vectors of exponential type, Dokl. Akad. Nauk BSSR 27 (1983), no. 9, 791-793. MathSciNet

John Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355-361. MathSciNet

Kosaku Yosida, On the differentiability of semigroups of linear operators, Proc. Japan Acad. 34 (1958), 337-340. MathSciNet

Kosaku Yosida, Functional analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MathSciNet

Downloads

Published

2016-06-25

Issue

Section

Articles

How to Cite

Markin, M. V. “On the Generation of Beurling Type Carleman Ultradifferentiable $C_0$-Semigroups by Scalar Type Spectral Operators”. Methods of Functional Analysis and Topology, vol. 22, no. 2, June 2016, pp. 169-83, https://zen.imath.kiev.ua/index.php/mfat/article/view/634.