On nonsymmetric rank one singular perturbations of selfadjoint operators

Authors

  • T. Vdovenko National Technical University of Ukraine "Kyiv Polytechnic Institute", 37 Prospect Peremogy, Kyiv, 03056, Ukraine
  • M. E. Dudkin National Technical University of Ukraine "Kyiv Polytechnic Institute", 37 Prospect Peremogy, Kyiv, 03056, Ukraine

DOI:

Keywords:

Singular perturbation, nonsymmetric perturbations, eigenvalue problem, M. Krein's formula

Abstract

We consider nonsymmetric rank one singular perturbations of a selfadjoint operator, i.e., an expression of the form $\tilde A=A+\alpha\left\langle\cdot,\omega_1\right\rangle\omega_2$, $\omega_1\not=\omega_2$, $\alpha\in{\mathbb C}$, in a general case $\omega_1,\omega_2\in{\mathcal H}_{-2}$. Using a constructive description of the perturbed operator $\tilde A$, we investigate some spectral and approximations properties of $\tilde A$. The wave operators corresponding to the couple $A$, $\tilde A$ and a series of examples are also presented.

References

S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable models in quantum mechanics, AMS Chelsea Publishing, Providence, RI, 2005. MathSciNet

Sergio Albeverio, Mykola Dudkin, and Volodymyr Koshmanenko, Rank-one singular perturbations with a dual pair of eigenvalues, Lett. Math. Phys. 63 (2003), no. 3, 219-228. MathSciNet CrossRef

S. Albeverio and P. Kurasov, Singular perturbations of differential operators, London Mathematical Society Lecture Note Series, vol. 271, Cambridge University Press, Cambridge, 2000. MathSciNet CrossRef

S. Albeverio, V. Koshmanenko, P. Kurasov, and L. Nizhnik, On approximations of rank one $scr H_ -2$-perturbations, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1443-1452. MathSciNet CrossRef

Sergio Albeverio, Sergei Kuzhel, and Leonid P. Nizhnik, On the perturbation theory of self-adjoint operators, Tokyo J. Math. 31 (2008), no. 2, 273-292. MathSciNet CrossRef

Sergio Albeverio and Leonid Nizhnik, Schrodinger operators with nonlocal potentials, Methods Funct. Anal. Topology 19 (2013), no. 3, 199-210. MathSciNet MFAT Article

Yurij M. Berezansky and Johannes Brasche, Generalized selfadjoint operators and their singular perturbations, Methods Funct. Anal. Topology 8 (2002), no. 4, 1-14. MathSciNet MFAT Article

Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vols. 1, 2, Birkhauser Verlag, Basel-Boston-Berlin, 1996. (Russian edition: Vyshcha shkola, Kiev, 1990)

M. E. Dudkin, Invariant symmetric restrictions of a selfadjoint operator. II, Ukrainian Math. J. 50 (1998), no. 6, 888-900. MathSciNet CrossRef

M. E. Dudkin, Singularly perturbed normal operators, Ukrainian Mat. J. 51 (1999), no. 8, 1177-1187. MathSciNet CrossRef

Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MathSciNet

Tosio Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1966), no. 2, 258-279. MathSciNet CrossRef

Volodymyr Koshmanenko, Singular quadratic forms in perturbation theory, Mathematics and its Applications, vol. 474, Kluwer Academic Publishers, Dordrecht, 1999. MathSciNet CrossRef

V. Koshmanenko, Singularly perturbed operators, Mathematical results in quantum mechanics (Blossin, 1993), Oper. Theory Adv. Appl., vol. 70, Birkhauser, Basel, 1994, pp. 347-351. MathSciNet CrossRef

V. B. Lidskii, A non-selfadjoint operator of Sturm-Liouville type with a discrete spectrum, Trudy Mosk. Mat. Obsh. 9 (1960), 45-79. MathSciNet

M. M. Malamud and V. I. Mogilevskii, Krein type formula for canonical resolvents of dual pairs of linear relations, Methods Funct. Anal. Topology 8 (2002), no. 4, 72-100. MathSciNet MFAT Article

Leonid Nizhnik, Inverse nonlocal Sturm-Liouville problem, Inverse Problems 26 (2010), no. 12, 125006, 9 pp. MathSciNet CrossRef

Leonid Nizhnik, Inverse spectral nonlocal problem for the first order ordinary differential equation, Tamkang J. Math. 42 (2011), no. 3, 385-394. MathSciNet CrossRef

M. I. Vishik, On general boundary-value problems for elliptic differential equation, Trudy Mosk. Mat. Obsh. 1 (1952), 187-246. (Russian)

T. Vdovenko and M. Dudkin, Singular rank one nonsymmetric perturbations of a selfadjoint operator, Proceedings of Institute of Mathematics of NAS of Ukraine, 12 (2015), no. 1, 57-73. (Ukrainian)

Downloads

Published

2016-06-25

Issue

Section

Articles

How to Cite

Vdovenko, T., and M. E. Dudkin. “On Nonsymmetric Rank One Singular Perturbations of Selfadjoint Operators”. Methods of Functional Analysis and Topology, vol. 22, no. 2, June 2016, pp. 137-51, https://zen.imath.kiev.ua/index.php/mfat/article/view/632.