Inverse moment problem for non-Abelian Coxeter double Bruhat cells

Authors

  • M. I. Gekhtman Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

DOI:

Keywords:

Non-Abelian lattices, Coxeter double Bruhat cells, inverse problems

Abstract

We solve the inverse problem for non-Abelian Coxeter double Bruhat cells in terms of the matrix Weyl functions. This result can be used to establish complete integrability of the non-Abelian version of nonlinear Coxeter-Toda lattices in $GL_n$.

References

N. I. Akhiezer, The classical moment problem and some related questions in analysis, Translated by N. Kemmer, Hafner Publishing Co., New York, 1965. MathSciNet

Michael Atiyah and Nigel Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988. MathSciNet CrossRef

Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1-52. MathSciNet CrossRef

Arkady Berenstein and Vladimir Retakh, Noncommutative double Bruhat cells and their factorizations, Int. Math. Res. Not. (2005), no. 8, 477-516. MathSciNet CrossRef

Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet

Yu. M. Berezanskii, M. I. Gekhtman, and M. E. Shmoish, Integration of certain chains of nonlinear difference equations by the method of the inverse spectral problem, Ukrainian Math. J. 38 (1986), no. 1, 74-78. MathSciNet CrossRef

Yu. M. Berezanskii and A. A. Mokhon′ko, Integration of some nonlinear differential-difference equations using the spectral theory of normal block-Jacobi matrices, Funct. Anal. Appl. 42 (2008), no. 1, 1-18. MathSciNet CrossRef

Yu. M. Berezansky, I. Ya. Ivasiuk, and O. A. Mokhonko, Recursion relation for orthogonal polynomials on the complex plane, Methods Funct. Anal. Topology 14 (2008), no. 2, 108-116. MathSciNet MFAT Article

M. Bruschi, S. V. Manakov, O. Ragnisco, D. Levi, The nonabelian Toda lattice (discrete analogue of the matrix Schrodinger spectral problem), J. Math. Phys. 21 (1980), 2749-2753.

M. J. Cantero, L. Moral, and L. Velazquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl. 362 (2003), 29-56. MathSciNet CrossRef

Philippe Di Francesco and Rinat Kedem, $Q$-systems, heaps, paths and cluster positivity, Comm. Math. Phys. 293 (2010), no. 3, 727-802. MathSciNet CrossRef

Philippe Di Francesco and Rinat Kedem, Non-commutative integrability, paths and quasi-determinants, Adv. Math. 228 (2011), no. 1, 97-152. MathSciNet CrossRef

Pavel Etingof, Israel Gelfand, and Vladimir Retakh, Factorization of differential operators, quasideterminants, and nonabelian Toda field equations, Math. Res. Lett. 4 (1997), no. 2-3, 413-425. MathSciNet CrossRef

Ludwig D. Faddeev and Leon A. Takhtajan, Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer, Berlin, 2007. MathSciNet

Leonid Faybusovich and Michael Gekhtman, Elementary Toda orbits and integrable lattices, J. Math. Phys. 41 (2000), no. 5, 2905-2921. MathSciNet CrossRef

Leonid Faybusovich and Michael Gekhtman, Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices, Phys. Lett. A 272 (2000), no. 4, 236-244. MathSciNet CrossRef

Leonid Faybusovich and Michael Gekhtman, Inverse moment problem for elementary co-adjoint orbits, Inverse Problems 17 (2001), no. 5, 1295-1306. MathSciNet CrossRef

Shaun M. Fallat, Bidiagonal factorizations of totally nonnegative matrices, Amer. Math. Monthly 108 (2001), no. 8, 697-712. MathSciNet CrossRef

Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335-380. MathSciNet CrossRef

Sergey Fomin and Andrei Zelevinsky, Total positivity: tests and parametrizations, Math. Intelligencer 22 (2000), no. 1, 23-33. MathSciNet CrossRef

Israel Gelfand, Sergei Gelfand, Vladimir Retakh, and Robert Lee Wilson, Quasideterminants, Adv. Math. 193 (2005), no. 1, 56-141. MathSciNet CrossRef

M. I. Gekhtman, Integration of non-Abelian Toda-type chains, Funct. Anal. Appl. 24 (1990), no. 3, 231-233. MathSciNet CrossRef

Michael Gekhtman and Olena Korovnichenko, Matrix Weyl functions and non-abelian Coxeter-Toda lattices, Notions of positivity and the geometry of polynomials, Trends Math., Birkhauser/Springer Basel AG, Basel, 2011, pp. 221-237. MathSciNet CrossRef

M. Gekhtman, Hamiltonian structure of non-abelian Toda lattice, Lett. Math. Phys. 46 (1998), no. 3, 189-205. MathSciNet CrossRef

Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010. MathSciNet CrossRef

Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Generalized Backlund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math. 206 (2011), no. 2, 245-310. MathSciNet CrossRef

Tim Hoffmann, Johannes Kellendonk, Nadja Kutz, and Nicolai Reshetikhin, Factorization dynamics and Coxeter-Toda lattices, Comm. Math. Phys. 212 (2000), no. 2, 297-321. MathSciNet CrossRef

S. Kharchev, A. Mironov, and A. Zhedanov, Faces of relativistic Toda chain, Internat. J. Modern Phys. A 12 (1997), no. 15, 2675-2724. MathSciNet CrossRef

Bertram Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), no. 3, 195-338. MathSciNet CrossRef

M. Krein, Infinite $J$-matrices and a matrix-moment problem, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 125-128. MathSciNet

I. Krichever, The periodic nonabelian Toda chain and its two-dimensional generalization, Russ. Math. Surveys 39 (1981), 32-81.

Jurgen Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system, Dynamical systems, theory and applications. Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, pp. 467-497. MathSciNet

Michael Shmoish, On generalized spectral functions, the parametrization of block Hankel and block Jacobi matrices, and some root location problems, Linear Algebra Appl. 202 (1994), 91-128. MathSciNet CrossRef

W. W. Symes, Systems of Toda type, inverse spectral problems, and representation theory, Invent. Math. 59 (1980), no. 1, 13-51. MathSciNet CrossRef

Downloads

Published

2016-06-25

Issue

Section

Articles

How to Cite

Gekhtman, M. I. “Inverse Moment Problem for Non-Abelian Coxeter Double Bruhat Cells”. Methods of Functional Analysis and Topology, vol. 22, no. 2, June 2016, pp. 117-36, https://zen.imath.kiev.ua/index.php/mfat/article/view/631.