On a generalization of the three spectral inverse problem

Authors

  • V. N. Pivovarchik South Ukrainian National Pedagogical University, 26 Staroportofrankivs’ka, Odesa, 65020, Ukraine
  • O. M. Martynyuk South Ukrainian National Pedagogical University, 26 Staroportofrankivs’ka, Odesa, 65020, Ukraine
  • O. P. Boyko South Ukrainian National Pedagogical University, 26 Staroportofrankivs’ka, Odesa, 65020, Ukraine

DOI:

Keywords:

Sturm-Liouville equation, Dirichlet boundary condition, Neumann boundary condition, Marchenko equation, Lagrange interpolation series, sine-type function, Nevanlinna function

Abstract

We consider a generalization of the three spectral inverse problem, that is, for given spectrum of the Dirichlet-Dirichlet problem (the Sturm-Liouville problem with Dirichlet conditions at both ends) on the whole interval $[0,a]$, parts of spectra of the Dirichlet-Neumann and Dirichlet-Dirichlet problems on $[0,a/2]$ and parts of spectra of the Dirichlet-Newman and Dirichlet-Dirichlet problems on $[a/2,a]$, we find the potential of the Sturm-Liouville equation.

References

Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. MathSciNet

Mihaela C. Drignei, Uniqueness of solutions to inverse Sturm-Liouville problems with $L^ 2(0,a)$ potential using three spectra, Adv. in Appl. Math. 42 (2009), no. 4, 471-482. MathSciNet CrossRef

Mihaela Cristina Drignei, Constructibility of an $L^ 2_ Bbb R(0,a)$ solution to an inverse Sturm-Liouville problem using three Dirichlet spectra, Inverse Problems 26 (2010), no. 2, 025003, 29. MathSciNet CrossRef

Mihaela-Cristina Drignei, Numerical reconstruction in a three-spectra inverse Sturm-Liouville problem with mixed boundary conditions, Inverse Probl. Sci. Eng. 21 (2013), no. 8, 1368-1391. MathSciNet CrossRef

Jonathan Eckhardt, Two inverse spectral problems for a class of singular Krein strings, Int. Math. Res. Not. IMRN (2014), no. 13, 3692-3713. MathSciNet

Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl, Inverse spectral theory for Sturm-Liouville operators with distributional potentials, J. Lond. Math. Soc. (2) 88 (2013), no. 3, 801-828. MathSciNet CrossRef

Shouzhong Fu, Zongben Xu, and Guangsheng Wei, Inverse indefinite Sturm-Liouville problems with three spectra, J. Math. Anal. Appl. 381 (2011), no. 2, 506-512. MathSciNet CrossRef

Fritz Gesztesy and Barry Simon, On the determination of a potential from three spectra, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 85-92. MathSciNet

Ole H. Hald, Inverse eigenvalue problems for the mantle, Geophysical Journal of the Royal Astronomical Society 62 (1980), no. 1, 41-48. CrossRef

Harry Hochstadt and Burton Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978), no. 4, 676-680. MathSciNet

R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. III. Reconstruction by three spectra, J. Math. Anal. Appl. 284 (2003), no. 2, 626-646. MathSciNet CrossRef

M. G. Krein, Izbrannye trudy. III, Natsionalcprime naya Akademiya Nauk Ukrainy, Institut Matematiki, Kiev, 1997. MathSciNet

B. Ja. Levin and Ju. I. Ljubarskii, Interpolation by entire functions belonging to special classes and related expansions in series of exponentials, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 657-702, 704. MathSciNet

B. M. Levitan, Obratnye zadachi Shturma-Liuvillya, ``Nauka'', Moscow, 1984. MathSciNet

V. A. Marchenko, Operatory Shturma-Liuvillya i ikh prilozheniya, Izdat. ``Naukova Dumka'', Kiev, 1977. MathSciNet

O. Martinyuk and V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems 26 (2010), no. 3, 035011, 6. MathSciNet CrossRef

Vyacheslav Pivovarchik, On the Hald-Gesztesy-Simon theorem, Integral Equations Operator Theory 73 (2012), no. 3, 383-393. MathSciNet CrossRef

Vyacheslav N. Pivovarchik, An inverse Sturm-Liouville problem by three spectra, Integral Equations Operator Theory 34 (1999), no. 2, 234-243. MathSciNet CrossRef

Vyacheslav Pivovarchik and Harald Woracek, Shifted Hermite-Biehler functions and their applications, Integral Equations Operator Theory 57 (2007), no. 1, 101-126. MathSciNet CrossRef

Vyacheslav Pivovarchik and Harald Woracek, Sums of Nevanlinna functions and differential equations on star-shaped graphs, Oper. Matrices 3 (2009), no. 4, 451-501. MathSciNet CrossRef

L. Sakhnovich, Half-inverse problems on the finite interval, Inverse Problems 17 (2001), no. 3, 527-532. MathSciNet CrossRef

Takashi Suzuki, Inverse problems for heat equations on compact intervals and on circles. I, J. Math. Soc. Japan 38 (1986), no. 1, 39-65. MathSciNet CrossRef

Guangsheng Wei and Xi Wei, A generalization of three spectra theorem for inverse Sturm-Liouville problems, Appl. Math. Lett. 35 (2014), 41-45. MathSciNet CrossRef

Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MathSciNet

Downloads

Published

2016-03-25

Issue

Section

Articles

How to Cite

Pivovarchik, V. N., et al. “On a Generalization of the Three Spectral Inverse Problem”. Methods of Functional Analysis and Topology, vol. 22, no. 1, Mar. 2016, pp. 74-80, https://zen.imath.kiev.ua/index.php/mfat/article/view/628.