The investigation of Bogoliubov functionals by operator methods of moment problem

Authors

DOI:

Keywords:

Projection spectral theorem, Kondratiev--Kuna convolution, Lenard transform, Bogolyubov functional

Abstract

The article is devoted to a study of Bogoliubov functionals by using methods of the operator spectral theory being applied to the classical power moment problem. Some results, similar to corresponding ones for the moment problem, where obtained for such functionals. In particular, the following question was studied: under what conditions a sequence of nonlinear functionals is a sequence of Bogoliubov functionals.

References

N. I. Akhiezer, The classical moment problem and some related questions in analysis, Translated by N. Kemmer, Hafner Publishing Co., New York, 1965. MathSciNet

Yu. M. Berezanskii, Generalization of Bochners theorem to expansions according to eigenfunctions of partial differential equations, Dokl. Akad. Nauk SSSR (N.S.) 110 (1956), 893-896. MathSciNet

Ju. M. Berezanskii, A generalization of a multidimensional theorem of Bochner, Dokl. Akad. Nauk SSSR 136 (1961), 1011-1014. MathSciNet

Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. MathSciNet

Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, Translations of Mathematical Monographs, vol. 63, American Mathematical Society, Providence, RI, 1986. MathSciNet

Yurij M. Berezansky, Commutative Jacobi fields in Fock space, Integral Equations Operator Theory 30 (1998), no. 2, 163-190. MathSciNet CrossRef

Yurij M. Berezansky, Some generalizations of the classical moment problem, Integral Equations Operator Theory 44 (2002), no. 3, 255-289. MathSciNet CrossRef

Yu. M. Berezanskii, The generalized moment problem associated with correlation measures, Funktsional. Anal. i Prilozhen. 37 (2003), no. 4, 86-91. MathSciNet CrossRef

Y. M. Berezansky and Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Mathematical Physics and Applied Mathematics, vol. 12/1, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef

Yuri M. Berezansky, Yuri G. Kondratiev, Tobias Kuna, and Eugene Lytvynov, On a spectral representation for correlation measures in configuration space analysis, Methods Funct. Anal. Topology 5 (1999), no. 4, 87-100. MathSciNet MFAT Article

Yu. M. Berezansky, V. O. Livinsky, and E. W. Lytvynov, A generalization of Gaussian white noise analysis, Methods Funct. Anal. Topology 1 (1995), no. 1, 28-55. MathSciNet MFAT Article

Yurij M. Berezansky and Dmytro A. Mierzejewski, The construction of the chaotic representation for the gamma field, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), no. 1, 33-56. MathSciNet CrossRef

Yu. M. Berezansky and D. A. Mierzejewski, The investigation of a generalized moment problem associated with correlation measures, Methods Funct. Anal. Topology 13 (2007), no. 2, 124-151. MathSciNet MFAT Article

Yurij M. Berezansky and Mykola E. Dudkin, On the complex moment problem, Math. Nachr. 280 (2007), no. 1-2, 60-73. MathSciNet CrossRef

Yurij M. Berezansky and Mykola E. Dudkin, The complex moment problem and direct and inverse spectral problems for the block Jacobi type bounded normal matrices, Methods Funct. Anal. Topology 12 (2006), no. 1, 1-31. MathSciNet MFAT Article

Y. M. Berezansky, Z. G. Sheftel, and G. F. Us, Functional analysis. Vol. II, Operator Theory: Advances and Applications, vol. 86, Birkhauser Verlag, Basel, 1996. MathSciNet

Yu. M. Berezanskyi and V. A. Tesko, Spaces of test and generalized functions related to generalized translation operators, Ukrainian Math. J. 55 (2003), no. 12, 1907â1979. MathSciNet CrossRef

N. N. Bogolyubov, Problemy dinamicheskoj teorii v statisticheskoj fizike, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad,], 1946. MathSciNet

D. L. Finkelshtein, On convolutions on configuration spaces. II. Spaces of locally finite configurations, Ukrainian Math. J. 64 (2013), no. 12, 1919-1944. MathSciNet CrossRef

I. Gelfand, D. Raikov, and G. Shilov, Commutative normed rings, Translated from the Russian, with a supplementary chapter, Chelsea Publishing Co., New York, 1964. MathSciNet

Yuri G. Kondratiev and Tobias Kuna, Harmonic analysis on configuration space. I. General theory, SFB 256 Preprint no. 626, University of Bonn, Bonn, 1999.

Yuri G. Kondratiev and Tobias Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), no. 2, 201-233. MathSciNet CrossRef

Yuri G. Kondratiev, Tobias Kuna, and Maria Joao Oliveira, On the relations between Poissonian white noise analysis and harmonic analysis on configuration spaces, J. Funct. Anal. 213 (2004), no. 1, 1-30. MathSciNet CrossRef

Yuri G. Kondratiev, Tobias Kuna, and Maria Joao Oliveira, Holomorphic Bogoliubov functionals for interacting particle systems in continuum, J. Funct. Anal. 238 (2006), no. 2, 375-404. MathSciNet CrossRef

A. G. Kostjucenko and B. S. Mitjagin, Positive-definite functionals on nuclear spaces, Trudy Moskov. Mat. Obv sv c. 9 (1960), 283-316. MathSciNet

M. Krein, On a general method of decomposing Hermite-positive nuclei into elementary products, C. R. (Doklady) Acad. Sci. URSS (N.S.) 53 (1946), 3-6. MathSciNet

M. G. Krein, On Hermitian operators with directed functionals, Akad. Nauk Ukrain. RSR. Zbirnik Prac Inst. Mat. 1948 (1948), no. 10, 83-106. MathSciNet

Tobias Kuna, Studies in configuration space analysis and applications, Bonner Mathematische Schriften [Bonn Mathematical Publications], 324, Universitat Bonn, Mathematisches Institut, Bonn, 1999. MathSciNet

A. Lenard, Correlation functions and the uniqueness of the state in classical statistical mechanics, Comm. Math. Phys. 30 (1973), 35-44. MathSciNet

A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I, Arch. Rational Mech. Anal. 59 (1975), no. 3, 219-239. MathSciNet

A. Lenard, States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures, Arch. Rational Mech. Anal. 59 (1975), no. 3, 241-256. MathSciNet

G. I. Nazin, Method of the generating functional, J. Soviet Math. 31 no. 2, 2859-2886. CrossRef

M. J. Oliveira, Configuration space analysis and Poissonian white noise analysis, University of Lisbon, PhD Thesis, Lisbon, 2002.

David Ruelle, Cluster property of the correlation functions of classical gases, Rev. Modern Phys. 36 (1964), 580-584. MathSciNet

Volodymyr Tesko, One generalization of the classical moment problem, Methods Funct. Anal. Topology 17 (2011), no. 4, 356-380. MathSciNet MFAT Article

V. S. Vladimirov, Obobshchennye funktsii v matematicheskoi fizike, Izdat. ``Nauka'', Moscow, 1976. MathSciNet

Downloads

Published

2016-03-25

Issue

Section

Articles

How to Cite

Tesko, V. A., and Yu. M. Berezansky. “The Investigation of Bogoliubov Functionals by Operator Methods of Moment Problem”. Methods of Functional Analysis and Topology, vol. 22, no. 1, Mar. 2016, pp. 1-47, https://zen.imath.kiev.ua/index.php/mfat/article/view/625.