Spectral and pseudospectral functions of Hamiltonian systems: development of the results by Arov-Dym and Sakhnovich
DOI:
Keywords:
Hamiltonian system, spectral function, pseudospectral function, Fourier transform, $m$-functionAbstract
The main object of the paper is a Hamiltonian system $J y'-B(t)y=\lambda\Delta(t) y$ defined on an interval $[a,b) $ with the regular endpoint $a$. We define a pseudo\-spectral function of a singular system as a matrix-valued distribution function such that the generalized Fourier transform is a partial isometry with the minimally possible kernel. Moreover, we parameterize all spectral and pseudospectral functions of a given system by means of a Nevanlinna boundary parameter. The obtained results develop the results by Arov-Dym and Sakhnovich in this direction.References
Sergio Albeverio, Mark Malamud, Vadim Mogilevskii, On Titchmarsh-Weyl functions and eigenfunction expansions of first-order symmetric systems, Integral Equations Operator Theory 77 (2013), no. 3, 303-354. MathSciNet CrossRef
Damir Z. Arov, Harry Dym, Bitangential direct and inverse problems for systems of integral and differential equations, Cambridge University Press, Cambridge, 2012. MathSciNet CrossRef
F. V. Atkinson, Discrete and continuous boundary problems, Academic Press, New York-London, 1964. MathSciNet
Jussi Behrndt, Seppo Hassi, Henk Snoo de, Rudi Wietsma, Square-integrable solutions and Weyl functions for singular canonical systems, Math. Nachr. 284 (2011), no. 11-12, 1334-1384. MathSciNet CrossRef
Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
V. M. Bruk, A certain class of boundary value problems with a spectral parameter in the boundary condition, Mat. Sb. (N.S.) 100(142) (1976), no. 2, 210-216. MathSciNet
V. A. Derkach, S. Hassi, M. M. Malamud, H. S. V. Snoo de, Generalized resolvents of symmetric operators and admissibility, Methods Funct. Anal. Topology 6 (2000), no. 3, 24-55. MathSciNet
Vladimir Derkach, Seppo Hassi, Mark Malamud, Henk Snoo de, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5351-5400. MathSciNet CrossRef
V. Derkach, S. Hassi, M. Malamud, H. Snoo de, Boundary relations and generalized resolvents of symmetric operators, Russ. J. Math. Phys. 16 (2009), no. 1, 17-60. MathSciNet CrossRef
V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. MathSciNet CrossRef
V. A. Derkach, M. M. Malamud, Characteristic functions of almost solvable extensions of Hermitian operators, Ukrain. Mat. Zh. 44 (1992), no. 4, 435-459. MathSciNet CrossRef
V. A. Derkach, M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141-242. MathSciNet CrossRef
Aad Dijksma, Heinz Langer, Henk Snoo de, Hamiltonian systems with eigenvalue depending boundary conditions, in: Contributions to operator theory and its applications (Mesa, AZ, 1987), Birkhauser, Basel, 1988. MathSciNet
Aad Dijksma, Heinz Langer, Henk Snoo de, Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions, Math. Nachr. 161 (1993), 107-154. MathSciNet CrossRef
Nelson Dunford, Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963. MathSciNet
I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, American Mathematical Society, Providence, R.I., 1970. MathSciNet
Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1991. MathSciNet
I. Kac, On Hilbert spaces generated by monotone Hermitian matrix-functions, Har′ kov Gos. Univ. Uv c. Zap. 34 = Zap. Mat. Otd. Fiz.-Mat. Fak. i Har′ kov. Mat. Obv sv c. (4) 22 (1950), 95-113 (1951). MathSciNet
I. S. Kats, Linear relations generated by a canonical differential equation of dimension 2, and eigenfunction expansions, Algebra i Analiz 14 (2002), no. 3, 86-120. MathSciNet
I. S. Kac, M. G. Krein, On spectral functions of a string, Supplement to the Russian edition of F. V. Atkinson, Discrete and Continuous Boundary Problems, Mir, Moscow, 1968. (Russian); English transl. Amer. Math. Soc. Transl. Ser. 2 103, Amer. Math. Soc., Providence, RI, 1974, pp. 19-102.
A. M. Khol′kin, Description of selfadjoint extensions of differential operators of arbitrary order on an infinite interval in the absolutely indeterminate case, Teor. Funktsiui Funktsional. Anal. i Prilozhen. (1985), no. 44, 112-122. MathSciNet CrossRef
V. I. Kogan, F. S. Rofe-Beketov, On square-integrable solutions of symmetric systems of differential equations of arbitrary order, Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/75), 5-40 (1976). MathSciNet
H. Langer, B. Textorius, Spectral functions of a symmetric linear relation with a directing mapping. I, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 165-176. MathSciNet CrossRef
H. Langer, B. Textorius, Spectral functions of a symmetric linear relation with a directing mapping. II, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), no. 1-2, 111-124. MathSciNet CrossRef
Matthias Lesch, Mark Malamud, On the deficiency indices and self-adjointness of symmetric Hamiltonian systems, J. Differential Equations 189 (2003), no. 2, 556-615. MathSciNet CrossRef
M. M. Malamud, On a formula for the generalized resolvents of a non-densely defined Hermitian operator, Ukrain. Mat. Zh. 44 (1992), no. 12, 1658-1688. MathSciNet CrossRef
Vadim Mogilevskii, Boundary pairs and boundary conditions for general (not necessarily definite) first-order symmetric systems with arbitrary deficiency indices, Math. Nachr. 285 (2012), no. 14-15, 1895-1931. MathSciNet CrossRef
V. I. Mogilevskii, On exit space extensions of symmetric operators with applications to first order symmetric systems, Methods Funct. Anal. Topology 19 (2013), no. 3, 268-292. MathSciNet
V. I. Mogilevskii, On spectral and pseudospectral functions of first-order symmetric systems, 21 Jul. 2014. arXiv:1407.5398v1
Vadim Mogilevskii, Characteristic matrices and spectral functions of first order symmetric systems with maximal deficiency index of the minimal relation, Methods Funct. Anal. Topology 21 (2015), no. 1, 76-98. MathSciNet
Bruce Call Orcutt, Canonical Differential Equations, Thesis (Ph.D.)-University of Virginia, 1969. MathSciNet
A. L. Sakhnovich, Spectral functions of a second-order canonical system, Mat. Sb. 181 (1990), no. 11, 1510-1524. MathSciNet
Alexander L. Sakhnovich, Lev A. Sakhnovich, Inna Ya. Roitberg, Inverse problems and nonlinear evolution equations, De Gruyter, Berlin, 2013. MathSciNet CrossRef
A. V. Straus, On generalized resolvents and spectral functions of differential operators of even order, Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), 785-808. MathSciNet
A. V. Straus, Extensions and characteristic function of a symmetric operator, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 186-207. MathSciNet