Operators of stochastic differentiation on spaces of nonregular test functions of Lévy white noise analysis

Authors

  • N. A. Kachanovsky Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka, Kyiv, 01601, Ukraine

DOI:

Keywords:

Operator of stochastic differentiation, stochasticderivative, extended stochastic integral, Levy process

Abstract

The operators of stochastic differentiation, which are closely related with the extended Skorohod stochastic integral and with the Hida stochastic derivative, play an important role in the classical (Gaussian) white noise analysis. In particular, these operators can be used in order to study properties of the extended stochastic integral and of solutions of stochastic equations with Wick-type nonlinearities. During recent years the operators of stochastic differentiation were introduced and studied, in particular, in the framework of the Meixner white noise analysis, and on spaces of regular test and generalized functions of the Levy white noise analysis. In this paper we make the next step: introduce and study operators of stochastic differentiation on spaces of test functions that belong to the so-called nonregular rigging of the space of square integrable with respect to the measure of a Levy white noise functions, using Lytvynov's generalization of the chaotic representation property. This can be considered as a contribution in a further development of the Levy white noise analysis.

References

Fred Espen Benth, The Gross derivative and generalized random variables, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), no. 3, 381-396. MathSciNet CrossRef

Fred Espen Benth, Giulia Di Nunno, Arne Lokka, Bernt Oksendal, Frank Proske, Explicit representation of the minimal variance portfolio in markets driven by Levy processes, Math. Finance 13 (2003), no. 1, 55-72. MathSciNet CrossRef

Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef

Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vols. 1, 2, Birkhauser Verlag, Basel-Boston-Berlin, 1996; 3rd ed., Institute of Mathematics NAS of Ukraine, Kyiv, 2010. (Russian edition: Vyshcha Shkola, Kiev, 1990)

Jean Bertoin, Levy processes, Cambridge University Press, Cambridge, 1996. MathSciNet

Giulia Di Nunno, Bernt Oksendal, Frank Proske, Malliavin calculus for Levy processes with applications to finance, Springer-Verlag, Berlin, 2009. MathSciNet CrossRef

Giulia Di Nunno, Bernt Oksendal, Frank Proske, White noise analysis for Levy processes, J. Funct. Anal. 206 (2004), no. 1, 109-148. MathSciNet CrossRef

M. M. Dyriv, N. A. Kachanovsky, On operators of stochastic differentiation on spaces of regular test and generalized functions of Levy white noise analysis, Carpathian Math. Publ. 6 (2014), no. 2, 212-229.

M. M. Dyriv, N. A. Kachanovsky, Operators of stochastic differentiation on spaces of regular test and generalized functions in the Levy white noise analysis, Research Bulletin of National Technical University of Ukraine "Kyiv Polytechnic Institute" 2014, (4), 36-40.

M. M. Dyriv, N. A. Kachanovsky, Stochastic integrals with respect to a Levy process and stochastic derivatives on spaces of regular test and generalized functions, Research Bulletin of National Technical University of Ukraine "Kyiv Polytechnic Institute" 2013, (4), 27-30.

I. M. Gelfand, N. Ya. Vilenkin, Generalized Functions, Vol. IV: Applications of Harmonic Analysis, Academic Press, New York-London, 1964. (Russian edition: Fizmatgiz, Moscow, 1961)

I. I. Gihman, A. V. Skorohod, The Theory of Stochastic Processes, Vol. 2, Nauka, Moscow, 1973. (Russian); English transl. Springer-Verlag, Berlin-Heidelberg-New York, 1975.

Helge Holden, Bernt Oksendal, Jan Uboe, Tusheng Zhang, Stochastic partial differential equations, Birkhauser Boston, Inc., Boston, MA, 1996. MathSciNet CrossRef

Kiyosi Ito, Spectral type of the shift transformation of differential processes with stationary increments, Trans. Amer. Math. Soc. 81 (1956), 253-263. MathSciNet

Ju. M. Kabanov, Extended stochastic integrals, Teor. Verojatnost. i Primenen. 20 (1975), no. 4, 725-737. MathSciNet

Ju. M. Kabanov, A. V. Skorohod, Extended stochastic integrals, in: Proceedings of the School and Seminar on the Theory of Random Processes (Druskininkai, 1974), Part I (Russian), Inst. Fiz. i Mat. Akad. Nauk Litovsk. SSR, Vilnius, 1975. MathSciNet

N. A. Kachanovsky, A generalized Malliavin derivative connected with the Poisson- and gamma-measures, Methods Funct. Anal. Topology 9 (2003), no. 3, 213-240. MathSciNet

N. A. Kachanovsky, A generalized stochastic derivative on the Kondratiev-type space of regular generalized functions of gamma white noise, Methods Funct. Anal. Topology 12 (2006), no. 4, 363-383. MathSciNet

N. A. Kachanovsky, Generalized stochastic derivatives on a space of regular generalized functions of Meixner white noise, Methods Funct. Anal. Topology 14 (2008), no. 1, 32-53. MathSciNet

N. A. Kachanovsky, Generalized stochastic derivatives on parametrized spaces of regular generalized functions of Meixner white noise, Methods Funct. Anal. Topology 14 (2008), no. 4, 334-350. MathSciNet

N. A. Kachanovsky, Extended stochastic integrals with respect to a Levy process on spaces of generalized functions, Mathematical Bulletin of Taras Shevchenko Scientific Society 10 (2013), 169-188.

N. A. Kachanovsky, On an extended stochastic integral and the Wick calculus on the connected with the generalized Meixner measure Kondratiev-type spaces, Methods Funct. Anal. Topology 13 (2007), no. 4, 338-379. MathSciNet

N. A. Kachanovsky, On extended stochastic integrals with respect to Levy processes, Carpathian Math. Publ. 5 (2013), no. 2, 256-278. MathSciNet

N. A. Kachanovsky, V. A. Tesko, Stochastic integral of Hitsuda-Skorokhod type on the extended Fock space, Ukrain. Mat. Zh. 61 (2009), no. 6, 733-764. MathSciNet CrossRef

Eugene Lytvynov, Orthogonal decompositions for Levy processes with an application to the gamma, Pascal, and Meixner processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), no. 1, 73-102. MathSciNet CrossRef

Paul-Andre Meyer, Quantum probability for probabilists, Springer-Verlag, Berlin, 1993. MathSciNet CrossRef

David Nualart, Wim Schoutens, Chaotic and predictable representations for Levy processes, Stochastic Process. Appl. 90 (2000), no. 1, 109-122. MathSciNet CrossRef

Philip Protter, Stochastic integration and differential equations, Springer-Verlag, Berlin, 1990. MathSciNet CrossRef

Ken-iti Sato, Levy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999. MathSciNet

Wim Schoutens, Stochastic processes and orthogonal polynomials, Springer-Verlag, New York, 2000. MathSciNet CrossRef

A. V. Skorohod, Integration in Hilbert space, Springer-Verlag, New York-Heidelberg, 1974. MathSciNet

A. V. Skorohod, On a generalization of the stochastic integral, Teor. Verojatnost. i Primenen. 20 (1975), no. 2, 223-238. MathSciNet

Josep Lluis Sole, Frederic Utzet, Josep Vives, Chaos expansions and Malliavin calculus for Levy processes, in: Stochastic analysis and applications, Springer, Berlin, 2007. MathSciNet CrossRef

D. Surgailis, On $L^2$ and non-$L^2$ multiple stochastic integration, in: Stochastic differential systems (Visegrad, 1980), Springer, Berlin-New York, 1981. MathSciNet

Ali Suleyman Ustunel, An introduction to analysis on Wiener space, Springer-Verlag, Berlin, 1995. MathSciNet

Downloads

Published

2015-12-25

Issue

Section

Articles

How to Cite

Kachanovsky, N. A. “Operators of Stochastic Differentiation on Spaces of Nonregular Test Functions of Lévy White Noise Analysis”. Methods of Functional Analysis and Topology, vol. 21, no. 4, Dec. 2015, pp. 336-60, https://zen.imath.kiev.ua/index.php/mfat/article/view/622.