On a class of generalized Stieltjes continued fractions
DOI:
Keywords:
Moment problem, continued fraction, generalized Stieltjes fraction, Darboux transformation, generalized Jacobi matrix, triangular factorization, unwrapping transformationAbstract
With each sequence of real numbers ${\mathbf s}=\{s_j\}_{j=0}^\infty$ two kinds of continued fractions are associated, - the so-called $P-$fraction and a generalized Stieltjes fraction that, in the case when ${\mathbf s}=\{s_j\}_{j=0}^\infty$ is a sequence of moments of a probability measure on $\mathbb R_+$, coincide with the $J-$fraction and the Stieltjes fraction, respectively. A subclass $\mathcal H^{reg}$ of regular sequences is specified for which explicit formulas connecting these two continued fractions are found. For ${\mathbf s}\in\mathcal H^{reg}$ the Darboux transformation of the corresponding generalized Jacobi matrix is calculated in terms of the generalized Stieltjes fraction.References
N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. MathSciNet
George A. Baker Jr., Peter Graves-Morris, Pade approximants. Part I, Addison-Wesley Publishing Co., Reading, Mass., 1981. MathSciNet
Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
M. I. Bueno, F. Marcellan, Darboux transformation and perturbation of linear functionals, Linear Algebra Appl. 384 (2004), 215-242. MathSciNet CrossRef
M. Derevyagin, On the Schur algorithm for indefinite moment problem, Methods Funct. Anal. Topology 9 (2003), no. 2, 133-145. MathSciNet
Maxim Derevyagin, On the relation between Darboux transformations and polynomial mappings, J. Approx. Theory 172 (2013), 4-22. MathSciNet CrossRef
Maxim Derevyagin, Spectral theory of the $G$-symmetric tridiagonal matrices related to Stahls counterexample, J. Approx. Theory 191 (2015), 58-70. MathSciNet CrossRef
Maxim Derevyagin, Vladimir Derkach, Spectral problems for generalized Jacobi matrices, Linear Algebra Appl. 382 (2004), 1-24. MathSciNet CrossRef
Maxim Derevyagin, Vladimir Derkach, Darboux transformations of Jacobi matrices and Pade approximation, Linear Algebra Appl. 435 (2011), no. 12, 3056-3084. MathSciNet CrossRef
Vladimir Derkach, On indefinite moment problems and resolvent matrices of Hermitian operators in Krei n spaces, Math. Nachr. 184 (1997), 135-166. MathSciNet CrossRef
V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. MathSciNet CrossRef
I. Gohberg, P. Lancaster, L. Rodman, Matrix polynomials, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. MathSciNet
Olga Holtz, Mikhail Tyaglov, Structured matrices, continued fractions, and root localization of polynomials, SIAM Rev. 54 (2012), no. 3, 421-509. MathSciNet CrossRef
I. S. Kac and M. G. Krein, $R$-functions - analytic functions mapping the upper halfplane into itself, Supplement to the Russian edition of F. V. Atkinson, Discrete and Continuous Boundary Problems, Mir, Moscow, 1968. (Russian); English transl. Amer. Math. Soc. Transl. Ser. 2 103 (1974), 1-18.
M. Kaltenback, H. Winkler, H. Woracek, Symmetric relations of finite negativity, in: Operator theory in Krein spaces and nonlinear eigenvalue problems, Birkhauser, Basel, 2006. MathSciNet CrossRef
Ivan Kovalyov, Darboux transformation of generalized Jacobi matrices, Methods Funct. Anal. Topology 20 (2014), no. 4, 301-320. MathSciNet
M. G. Krein, H. Langer, Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $Pi _kappa $ zusammenhangen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77 (1977), 187-236. MathSciNet
M. G. Krein, Heinz Langer, On some extension problems which are closely connected with the theory of Hermitian operators in a space $Pi _kappa $. III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part I, Beitrage Anal. (1979), no. 14, 25-40 (loose errata). MathSciNet
M. G. Krein, H. Langer, Some propositions on analytic matrix functions related to the theory of operators in the space $Pi _kappa $, Acta Sci. Math. (Szeged) 43 (1981), no. 1-2, 181-205. MathSciNet
M. G. Krein, A. A. Nudel′man, The Markov moment problem and extremal problems, American Mathematical Society, Providence, R.I., 1977. MathSciNet
Arne Magnus, Expansion of power series into $P$-fractions, Math. Z. 80 (1962), 209-216. MathSciNet
Franz Peherstorfer, Finite perturbations of orthogonal polynomials, J. Comput. Appl. Math. 44 (1992), no. 3, 275-302. MathSciNet CrossRef
Barry Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998), no. 1, 82-203. MathSciNet CrossRef
T.-J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), no. 4, J1-J122. MathSciNet
H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, New-York, 1967.