Weak dependence for a class of local functionals of Markov chains on ${\mathbb Z}^d$
DOI:
Keywords:
Markov chains, stochastic operator, mixing, randomwalks in random environmentAbstract
In many models of Mathematical Physics, based on the study of a Markov chain $\widehat \eta= \{\eta_{t}\}_{t=0}^{\infty}$ on ${\mathbb Z}^d$, one can prove by perturbative arguments a contraction property of the stochastic operator restricted to a subspace of local functions $\mathcal H_{M}$ endowed with a suitable norm. We show, on the example of a model of random walk in random environment with mutual interaction, that the condition is enough to prove a Central Limit Theorem for sequences $\{f(S^{k}\widehat \eta)\}_{k=0}^{\infty}$, where $S$ is the time shift and $f$ is strictly local in space and belongs to a class of functionals related to the H\"older continuous functions on the torus $T^{1}$.References
Nicolae Angelescu, Robert A. Minlos, Valentin A. Zagrebnov, The one-particle energy spectrum of weakly coupled quantum rotators, J. Math. Phys. 41 (2000), no. 1, 1-23. MathSciNet CrossRef
Carlo Boldrighini, Robert A. Minlos, Alessandro Pellegrinotti, Interacting random walk in a dynamical random environment. I. Decay of correlations, Ann. Inst. H. Poincare Probab. Statist. 30 (1994), no. 4, 519-558. MathSciNet
Carlo Boldrighini, Robert A. Minlos, Alessandro Pellegrinotti, Interacting random walk in a dynamical random environment. II. Environment from the point of view of the particle, Ann. Inst. H. Poincare Probab. Statist. 30 (1994), no. 4, 559-605. MathSciNet
C. Boldrighini, R. A. Minlos, A. Pellegrinotti, Random walk in a fluctuating random environment with Markov evolution, in: On Dobrushins way. From probability theory to statistical physics, Amer. Math. Soc., Providence, RI, 2000. MathSciNet
K. Boldrigini, R. A. Minlos, A. Pellegrinotti, Random walks in a random (fluctuating) environment, Uspekhi Mat. Nauk 62 (2007), no. 4(376), 27-76. MathSciNet CrossRef
K. Boldrigini, R. A. Minlos, A. Pellegrinotti, Random walks in random environment with Markov dependence on time, Condensed Matter Physics 11 (2008), no. 2, 209-221. CrossRef
Ju. A. Davydov, Mixing conditions for Markov chains, Teor. Verojatnost. i Primenen. 18 (1973), 321-338. MathSciNet
Dmitry Dolgopyat, Gerhard Keller, Carlangelo Liverani, Random walk in Markovian environment, Ann. Probab. 36 (2008), no. 5, 1676-1710. MathSciNet CrossRef
Dmitry Dolgopyat, Carlangelo Liverani, Non-perturbative approach to random walk in Markovian environment, Electron. Commun. Probab. 14 (2009), 245-251. MathSciNet CrossRef
N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MathSciNet
I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. MathSciNet
C. Kipnis, S. R. S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys. 104 (1986), no. 1, 1-19. MathSciNet
Yu. G. Kondratiev, R. A. Minlos, One-particle subspaces in the stochastic $XY$ model, J. Statist. Phys. 87 (1997), no. 3-4, 613-642. MathSciNet CrossRef
Yuri Kondratiev, Robert Minlos, Elena Zhizhina, One-particle subspace of the Glauber dynamics generator for continuous particle systems, Rev. Math. Phys. 16 (2004), no. 9, 1073-1114. MathSciNet CrossRef
V. A. Malyshev, R. A. Minlos, Linear infinite-particle operators, American Mathematical Society, Providence, RI, 1995. MathSciNet