Tannaka-Krein duality for compact quantum group coactions (survey)
DOI:
Keywords:
Compact quantum group, coaction, Tannaka-Krein dualityAbstract
The last decade saw an appearance of a series of papers containing a very interesting development of the Tannaka-Krein duality for compact quantum group coactions on $C^*$-algebras. The present survey is intended to present the main ideas and constructions underlying this development.References
Saad Baaj, Georges Skandalis, $C^ ast$-alg`ebres de Hopf et theorie de Kasparov equivariante, $K$-Theory 2 (1989), no. 6, 683-721. MathSciNet CrossRef
Yu. M. Berezansky, A. A. Kalyuzhnyi, Harmonic analysis in hypercomplex systems, Kluwer Academic Publishers, Dordrecht, 1998. MathSciNet CrossRef
Julien Bichon, Hopf-Galois objects and cogroupoids, Rev. Un. Mat. Argentina 55 (2014), no. 2, 11-69. MathSciNet
Julien Bichon, An De Rijdt, Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703-728. MathSciNet CrossRef
Florin P. Boca, Ergodic actions of compact matrix pseudogroups on $C^ *$-algebras, Asterisque (1995), no. 232, 93-109. MathSciNet
Kenny De Commer, Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ. 28 (2013), No. 31, 1099-1138. MathSciNet
Kenny De Commer, Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces II. Classification of quantum homogeneous spaces for quantum $rm SU(2)$, J. Reine Angew. Math. 708 (2015), 143-171. MathSciNet
Sergio Doplicher, John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157-218. MathSciNet CrossRef
An De Rijdt, Nikolas Vander Vennet, Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 1, 169-216. MathSciNet
Michel Enock, Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992. MathSciNet CrossRef
T. Hayashi, A canonical Tannaka duality for finite semisimple tensor categories, Preprint: math/9904073 [math.QA] (1999).
Andre Joyal, Ross Street, An introduction to Tannaka duality and quantum groups, in: Category theory (Como, 1990), Springer, Berlin, 1991. MathSciNet CrossRef
M. Krein, A principle of duality for bicompact groups and quadratic block algebras, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 725-728. MathSciNet
E. C. Lance, Hilbert $C^ *$-modules, Cambridge University Press, Cambridge, 1995. MathSciNet CrossRef
Magnus B. Landstad, Ergodic actions of nonabelian compact groups, in: Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992. MathSciNet
Magnus B. Landstad, Simplicity of crossed products from ergodic actions of compact matrix pseudogroups, Asterisque (1995), no. 232, 111-114. MathSciNet
Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. MathSciNet
Sergey Neshveyev, Duality theory for nonergodic actions, Munster J. Math. 7 (2014), no. 2, 413-437. MathSciNet
Sergey Neshveyev, Lars Tuset, Compact quantum groups and their representation categories, Soci'et'e Math'ematique de France, Paris, 2013. MathSciNet
Sergey Neshveyev, Lars Tuset, Hopf algebra equivariant cyclic cohomology, $K$-theory and index formulas, $K$-Theory 31 (2004), no. 4, 357-378. MathSciNet CrossRef
Sergey Neshveyev, Makoto Yamashita, Categorical duality for Yetter-Drinfeld algebras, Doc. Math. 19 (2014), 1105-1139. MathSciNet
Ryszard Nest, Christian Voigt, Equivariant Poincare duality for quantum group actions, J. Funct. Anal. 258 (2010), no. 5, 1466-1503. MathSciNet CrossRef
Victor Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177-206. MathSciNet CrossRef
Claudia Pinzari, John E. Roberts, A duality theorem for ergodic actions of compact quantum groups on $C^ *$-algebras, Comm. Math. Phys. 277 (2008), no. 2, 385-421. MathSciNet CrossRef
P. Podles, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193-202. MathSciNet CrossRef
Piotr Podles, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $rm SU(2)$ and $rm SO(3)$ groups, Comm. Math. Phys. 170 (1995), no. 1, 1-20. MathSciNet
Pekka Salmi, Compact quantum subgroups and left invariant $C^ *$-subalgebras of locally compact quantum groups, J. Funct. Anal. 261 (2011), no. 1, 1-24. MathSciNet CrossRef
Peter Schauenburg, Hopf bi-Galois extensions, Comm. Algebra 24 (1996), no. 12, 3797-3825. MathSciNet CrossRef
Piotr M. Soltan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), no. 4, 1245-1270. MathSciNet
T. Tannaka, Uber den Dualitatssatz der nichtkommutativen topologischen Gruppen, Tohoku Math. J. 45 (1938), no. 1, 1-12.
Reiji Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), no. 1, 271-296. MathSciNet CrossRef
Reiji Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), no. 1, 1-83. MathSciNet CrossRef
V. G. Turaev, Quantum invariants of knots and 3-manifolds, Walter de Gruyter & Co., Berlin, 1994. MathSciNet
K.-H. Ulbrich, Fibre functors of finite-dimensional comodules, Manuscripta Math. 65 (1989), no. 1, 39-46. MathSciNet CrossRef
R. Vergnioux, KK-theorie equivariante et operateur de Julg-Valette pour les groupes quantiques, PhD thesis, Universite Denis Diderot-Paris 7, 2002.
Shuzhou Wang, Ergodic actions of universal quantum groups on operator algebras, Comm. Math. Phys. 203 (1999), no. 2, 481-498. MathSciNet CrossRef
Antony Wassermann, Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), no. 2, 273-319. MathSciNet CrossRef
Antony Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), no. 6, 1482-1527. MathSciNet CrossRef
Antony Wassermann, Ergodic actions of compact groups on operator algebras. III. Classification for $rm SU(2)$, Invent. Math. 93 (1988), no. 2, 309-354. MathSciNet CrossRef
S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613-665. MathSciNet
S. L. Woronowicz, Twisted $rm SU(2)$ group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117-181. MathSciNet CrossRef
S. L. Woronowicz, Compact quantum groups, in: Symetries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998. MathSciNet
S. L. Woronowicz, Tannaka-Krei n duality for compact matrix pseudogroups. Twisted $rm SU(N)$ groups, Invent. Math. 93 (1988), no. 1, 35-76. MathSciNet CrossRef