Tannaka-Krein duality for compact quantum group coactions (survey)

Authors

  • L. I. Vainerman Universite de Caen, LMNO, Campus II, B.P. 5186, F-14032 Caen Cedex, France

DOI:

Keywords:

Compact quantum group, coaction, Tannaka-Krein duality

Abstract

The last decade saw an appearance of a series of papers containing a very interesting development of the Tannaka-Krein duality for compact quantum group coactions on $C^*$-algebras. The present survey is intended to present the main ideas and constructions underlying this development.

References

Saad Baaj, Georges Skandalis, $C^ ast$-alg`ebres de Hopf et theorie de Kasparov equivariante, $K$-Theory 2 (1989), no. 6, 683-721. MathSciNet CrossRef

Yu. M. Berezansky, A. A. Kalyuzhnyi, Harmonic analysis in hypercomplex systems, Kluwer Academic Publishers, Dordrecht, 1998. MathSciNet CrossRef

Julien Bichon, Hopf-Galois objects and cogroupoids, Rev. Un. Mat. Argentina 55 (2014), no. 2, 11-69. MathSciNet

Julien Bichon, An De Rijdt, Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703-728. MathSciNet CrossRef

Florin P. Boca, Ergodic actions of compact matrix pseudogroups on $C^ *$-algebras, Asterisque (1995), no. 232, 93-109. MathSciNet

Kenny De Commer, Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ. 28 (2013), No. 31, 1099-1138. MathSciNet

Kenny De Commer, Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces II. Classification of quantum homogeneous spaces for quantum $rm SU(2)$, J. Reine Angew. Math. 708 (2015), 143-171. MathSciNet

Sergio Doplicher, John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157-218. MathSciNet CrossRef

An De Rijdt, Nikolas Vander Vennet, Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 1, 169-216. MathSciNet

Michel Enock, Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992. MathSciNet CrossRef

T. Hayashi, A canonical Tannaka duality for finite semisimple tensor categories, Preprint: math/9904073 [math.QA] (1999).

Andre Joyal, Ross Street, An introduction to Tannaka duality and quantum groups, in: Category theory (Como, 1990), Springer, Berlin, 1991. MathSciNet CrossRef

M. Krein, A principle of duality for bicompact groups and quadratic block algebras, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 725-728. MathSciNet

E. C. Lance, Hilbert $C^ *$-modules, Cambridge University Press, Cambridge, 1995. MathSciNet CrossRef

Magnus B. Landstad, Ergodic actions of nonabelian compact groups, in: Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992. MathSciNet

Magnus B. Landstad, Simplicity of crossed products from ergodic actions of compact matrix pseudogroups, Asterisque (1995), no. 232, 111-114. MathSciNet

Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. MathSciNet

Sergey Neshveyev, Duality theory for nonergodic actions, Munster J. Math. 7 (2014), no. 2, 413-437. MathSciNet

Sergey Neshveyev, Lars Tuset, Compact quantum groups and their representation categories, Soci'et'e Math'ematique de France, Paris, 2013. MathSciNet

Sergey Neshveyev, Lars Tuset, Hopf algebra equivariant cyclic cohomology, $K$-theory and index formulas, $K$-Theory 31 (2004), no. 4, 357-378. MathSciNet CrossRef

Sergey Neshveyev, Makoto Yamashita, Categorical duality for Yetter-Drinfeld algebras, Doc. Math. 19 (2014), 1105-1139. MathSciNet

Ryszard Nest, Christian Voigt, Equivariant Poincare duality for quantum group actions, J. Funct. Anal. 258 (2010), no. 5, 1466-1503. MathSciNet CrossRef

Victor Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177-206. MathSciNet CrossRef

Claudia Pinzari, John E. Roberts, A duality theorem for ergodic actions of compact quantum groups on $C^ *$-algebras, Comm. Math. Phys. 277 (2008), no. 2, 385-421. MathSciNet CrossRef

P. Podles, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193-202. MathSciNet CrossRef

Piotr Podles, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $rm SU(2)$ and $rm SO(3)$ groups, Comm. Math. Phys. 170 (1995), no. 1, 1-20. MathSciNet

Pekka Salmi, Compact quantum subgroups and left invariant $C^ *$-subalgebras of locally compact quantum groups, J. Funct. Anal. 261 (2011), no. 1, 1-24. MathSciNet CrossRef

Peter Schauenburg, Hopf bi-Galois extensions, Comm. Algebra 24 (1996), no. 12, 3797-3825. MathSciNet CrossRef

Piotr M. Soltan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), no. 4, 1245-1270. MathSciNet

T. Tannaka, Uber den Dualitatssatz der nichtkommutativen topologischen Gruppen, Tohoku Math. J. 45 (1938), no. 1, 1-12.

Reiji Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), no. 1, 271-296. MathSciNet CrossRef

Reiji Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), no. 1, 1-83. MathSciNet CrossRef

V. G. Turaev, Quantum invariants of knots and 3-manifolds, Walter de Gruyter & Co., Berlin, 1994. MathSciNet

K.-H. Ulbrich, Fibre functors of finite-dimensional comodules, Manuscripta Math. 65 (1989), no. 1, 39-46. MathSciNet CrossRef

R. Vergnioux, KK-theorie equivariante et operateur de Julg-Valette pour les groupes quantiques, PhD thesis, Universite Denis Diderot-Paris 7, 2002.

Shuzhou Wang, Ergodic actions of universal quantum groups on operator algebras, Comm. Math. Phys. 203 (1999), no. 2, 481-498. MathSciNet CrossRef

Antony Wassermann, Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), no. 2, 273-319. MathSciNet CrossRef

Antony Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), no. 6, 1482-1527. MathSciNet CrossRef

Antony Wassermann, Ergodic actions of compact groups on operator algebras. III. Classification for $rm SU(2)$, Invent. Math. 93 (1988), no. 2, 309-354. MathSciNet CrossRef

S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613-665. MathSciNet

S. L. Woronowicz, Twisted $rm SU(2)$ group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117-181. MathSciNet CrossRef

S. L. Woronowicz, Compact quantum groups, in: Symetries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998. MathSciNet

S. L. Woronowicz, Tannaka-Krei n duality for compact matrix pseudogroups. Twisted $rm SU(N)$ groups, Invent. Math. 93 (1988), no. 1, 35-76. MathSciNet CrossRef

Downloads

Published

2015-09-25

Issue

Section

Articles

How to Cite

Vainerman, L. I. “Tannaka-Krein Duality for Compact Quantum Group Coactions (survey)”. Methods of Functional Analysis and Topology, vol. 21, no. 3, Sept. 2015, pp. 282-98, https://zen.imath.kiev.ua/index.php/mfat/article/view/618.