The multi-dimensional truncated moment problem: maximal masses
DOI:
Keywords:
Moment problem, maximal mass, positive polynomialAbstract
Given a subset $\mathcal K$ of $\mathbb R^d$ and a linear functional $L$ on the polynomials $\mathbb R^d_{2n}[\underline{x}]$ in $d$ variables and of degree at most $2n$ the truncated $\mathcal K$-moment problem asks when there is a positive Borel measure $\mu$ supported by $\mathcal K$ such that $L(p)=\int p\, d\mu$ for $p\in \mathbb R^d_{2n}[\underline{x}]$. For compact sets $\mathcal K$ we investigate the maximal mass of all representing measures at a given point of $\mathcal K$. Various characterizations of this quantity and related properties are developed and a close link to zeros of positive polynomials is established.References
N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. MathSciNet
Aharon Ben-Tal, Arkadi Nemirovski, Lectures on modern convex optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2001. Analysis, algorithms, and engineering applications MathSciNet CrossRef
Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
Christian Berg, Jens Peter Reus Christensen, Paul Ressel, Harmonic analysis on semigroups, Springer-Verlag, New York, 1984. Theory of positive definite and related functions MathSciNet CrossRef
G. Blekherman, J. B. Lasserre, The truncated K-moment problem for closure of open sets, J. Funct. Anal. 263 (2012), no. 11, 3604-3616. MathSciNet CrossRef
G. Choquet, Lectures on Analysis, Vol. III, Benjamin, New York, 1969.
Man Duen Choi, Tsit Yuen Lam, Bruce Reznick, Real zeros of positive semidefinite forms. I, Math. Z. 171 (1980), no. 1, 1-26. MathSciNet CrossRef
Ral E. Curto, Lawrence A. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52. MathSciNet CrossRef
Ral E. Curto, Lawrence A. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648, x+56. MathSciNet CrossRef
Ral E. Curto, Lawrence A. Fialkow, The truncated complex $K$-moment problem, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2825-2855. MathSciNet CrossRef
R. G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964), 243-246. MathSciNet
Lawrence A. Fialkow, Truncated multivariable moment problems with finite variety, J. Operator Theory 60 (2008), no. 2, 343-377. MathSciNet
William J. Helton, Jiawang Nie, A semidefinite approach for truncated $K$-moment problems, Found. Comput. Math. 12 (2012), no. 6, 851-881. MathSciNet CrossRef
M. G. Krein, A. A. Nudel′man, The Markov moment problem and extremal problems, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. vCebyvsev and A. A. Markov and their further development, Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, Vol. 50 MathSciNet
Jean Bernard Lasserre, Moments, positive polynomials and their applications, Imperial College Press, London, 2010. MathSciNet
Monique Laurent, Sums of squares, moment matrices and optimization over polynomials, in: Emerging applications of algebraic geometry, Springer, New York, 2009. MathSciNet CrossRef
J. Matzke, Mehrdimensionale Momentenprobleme und Positivitatskegel, Dissertation, Universitat Leipzig, 1992.
Murray Marshall, Positive polynomials and sums of squares, American Mathematical Society, Providence, RI, 2008. MathSciNet CrossRef
Hans Richter, Parameterfreie Abschatzung und Realisierung von Erwartungswerten, Bl. Deutsch. Ges. Versicherungsmath. 3 (1957), 147-162. MathSciNet
Raphael M. Robinson, Some definite polynomials which are not sums of squares of real polynomials, in: Selected questions of algebra and logic (collection dedicated to the memory of A. I. Mal′ cev) (Russian), Izdat. ``Nauka'' Sibirsk. Otdel., Novosibirsk, 1973. MathSciNet
W. W. Rogosinski, Moments of non-negative mass, Proc. Roy. Soc. London Ser. A 245 (1958), 1-27. MathSciNet
Konrad Schmudgen, Unbounded self-adjoint operators on Hilbert space, Springer, Dordrecht, 2012. MathSciNet CrossRef
Vladimir Tchakaloff, Formules de cubatures mecaniques `a coefficients non negatifs, Bull. Sci. Math. (2) 81 (1957), 123-134. MathSciNet