On Fourier algebra of a locally compact hypergroup
DOI:
Keywords:
Fourier algebra, Fourier-Stieltjes algebra, DJS-hypergroup, locally compact hypergroup, dual algebras, Pontryagin dualityAbstract
We give sufficient conditions for the Fourier and the Fourier-Stieltjes spaces of a locally compact hypergroup to be Banach algebras.References
Pierre Eymard, Lalg`ebre de Fourier dun groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MathSciNet
Varadharajan Muruganandam, Fourier algebra of a hypergroup. I, J. Aust. Math. Soc. 82 (2007), no. 1, 59-83. MathSciNet CrossRef
Varadharajan Muruganandam, Fourier algebra of a hypergroup. II. Spherical hypergroups, Math. Nachr. 281 (2008), no. 11, 1590-1603. MathSciNet CrossRef
N. Bourbaki, Integration, vol. 1, Springer-Verlag, Berlin-Heidelberg, 2004.
Walter R. Bloom, Herbert Heyer, Harmonic analysis of probability measures on hypergroups, Walter de Gruyter & Co., Berlin, 1995. MathSciNet CrossRef
Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MathSciNet
Gert K. Pedersen, $C^ast $-algebras and their automorphism groups, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MathSciNet
Forrest W. Stinespring, Positive functions on $C^ *$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MathSciNet
Jacques Dixmier, Les $C^ast $-alg`ebres et leurs representations, Gauthier-Villars 'Editeur, Paris, 1969. MathSciNet