On Fourier algebra of a locally compact hypergroup

Authors

  • A. A. Kalyuzhnyi Institute of Mathematics, National Academy of Sciences of Ukraine, vul. Tereshchinkivs’ka, 3, Kyiv, 01601, Ukraine
  • G. B. Podkolzin </em>Ukrainian National Technical University (&ldquo;KPI&rdquo;), pr. Pobedy, 57, Kyiv, Ukraine
  • Yu. A. Chapovsky Institute of Mathematics, National Academy of Sciences of Ukraine, vul. Tereshchinkivs&rsquo;ka, 3, Kyiv, 01601, Ukraine

DOI:

Keywords:

Fourier algebra, Fourier-Stieltjes algebra, DJS-hypergroup, locally compact hypergroup, dual algebras, Pontryagin duality

Abstract

We give sufficient conditions for the Fourier and the Fourier-Stieltjes spaces of a locally compact hypergroup to be Banach algebras.

References

Pierre Eymard, Lalg`ebre de Fourier dun groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MathSciNet

Varadharajan Muruganandam, Fourier algebra of a hypergroup. I, J. Aust. Math. Soc. 82 (2007), no. 1, 59-83. MathSciNet CrossRef

Varadharajan Muruganandam, Fourier algebra of a hypergroup. II. Spherical hypergroups, Math. Nachr. 281 (2008), no. 11, 1590-1603. MathSciNet CrossRef

N. Bourbaki, Integration, vol. 1, Springer-Verlag, Berlin-Heidelberg, 2004.

Walter R. Bloom, Herbert Heyer, Harmonic analysis of probability measures on hypergroups, Walter de Gruyter & Co., Berlin, 1995. MathSciNet CrossRef

Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MathSciNet

Gert K. Pedersen, $C^ast $-algebras and their automorphism groups, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MathSciNet

Forrest W. Stinespring, Positive functions on $C^ *$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MathSciNet

Jacques Dixmier, Les $C^ast $-alg`ebres et leurs representations, Gauthier-Villars 'Editeur, Paris, 1969. MathSciNet

Downloads

Published

2015-09-25

Issue

Section

Articles

How to Cite

Kalyuzhnyi, A. A., et al. “On Fourier Algebra of a Locally Compact Hypergroup”. Methods of Functional Analysis and Topology, vol. 21, no. 3, Sept. 2015, pp. 246-55, https://zen.imath.kiev.ua/index.php/mfat/article/view/615.