On complex perturbations of infinite band Schrödinger operators

Authors

  • S. Kupin Mathematics Division, Institute for Low Temperature Physics and Engineering, 47 Lenin ave., Kharkiv, 61103, Ukraine
  • L. Golinskii IMB, Universit´e Bordeaux 1, 351 cours de la Lib´eration, 33405 Talence Cedex, France

DOI:

Keywords:

Schrödinger operators, infinite-band spectrum, Lieb-Thirring type inequalities, relatively compactperturbations, resolvent identity

Abstract

Let $H_0=-\frac{d^2}{dx^2}+V_0$ be an infinite band Schrödinger operator on $L^2(\mathbb R)$ with a real-valued potential $V_0\in L^\infty(\mathbb R)$. We study its complex perturbation $H=H_0+V$, defined in the form sense, and obtain the Lieb-Thirring type inequ\-alities for the rate of convergence of the discrete spectrum of $H$ to the joint essential spectrum. The assumptions on $V$ vary depending on the sign of $Re V$.

References

A. Borichev, L. Golinskii, S. Kupin, A Blaschke-type condition and its application to complex Jacobi matrices, Bull. Lond. Math. Soc. 41 (2009), no. 1, 117-123. MathSciNet CrossRef

Brian E. Davies, Linear operators and their spectra, Cambridge University Press, Cambridge, 2007. MathSciNet CrossRef

Michael Demuth, Marcel Hansmann, Guy Katriel, On the discrete spectrum of non-selfadjoint operators, J. Funct. Anal. 257 (2009), no. 9, 2742-2759. MathSciNet CrossRef

Rupert L. Frank, Ari Laptev, Elliott H. Lieb, Robert Seiringer, Lieb-Thirring inequalities for Schrodinger operators with complex-valued potentials, Lett. Math. Phys. 77 (2006), no. 3, 309-316. MathSciNet CrossRef

Leonid Golinskii, Stanislas Kupin, On discrete spectrum of complex perturbations of finite band Schrodinger operators, in: Recent trends in analysis, Theta, Bucharest, 2013. MathSciNet

Marcel Hansmann, An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrodinger operators, Lett. Math. Phys. 98 (2011), no. 1, 79-95. MathSciNet CrossRef

Marcel Hansmann, Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators, Integral Equations Operator Theory 76 (2013), no. 2, 163-178. MathSciNet CrossRef

Tosio Kato, Perturbation theory for linear operators, Springer-Verlag New York, Inc., New York, 1966. MathSciNet

V. A. Marcenko, I. V. Ostrovs′kii, A characterization of the spectrum of the Hill operator, Mat. Sb. (N.S.) 97(139) (1975), no. 4(8), 540-606, 633-634. MathSciNet

Michael Reed, Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MathSciNet

Barry Simon, Trace ideals and their applications, American Mathematical Society, Providence, RI, 2005. MathSciNet

Downloads

Published

2015-09-25

Issue

Section

Articles

How to Cite

Kupin, S., and L. Golinskii. “On Complex Perturbations of Infinite Band Schrödinger Operators”. Methods of Functional Analysis and Topology, vol. 21, no. 3, Sept. 2015, pp. 237-45, https://zen.imath.kiev.ua/index.php/mfat/article/view/614.