On complex perturbations of infinite band Schrödinger operators
DOI:
Keywords:
Schrödinger operators, infinite-band spectrum, Lieb-Thirring type inequalities, relatively compactperturbations, resolvent identityAbstract
Let $H_0=-\frac{d^2}{dx^2}+V_0$ be an infinite band Schrödinger operator on $L^2(\mathbb R)$ with a real-valued potential $V_0\in L^\infty(\mathbb R)$. We study its complex perturbation $H=H_0+V$, defined in the form sense, and obtain the Lieb-Thirring type inequ\-alities for the rate of convergence of the discrete spectrum of $H$ to the joint essential spectrum. The assumptions on $V$ vary depending on the sign of $Re V$.References
A. Borichev, L. Golinskii, S. Kupin, A Blaschke-type condition and its application to complex Jacobi matrices, Bull. Lond. Math. Soc. 41 (2009), no. 1, 117-123. MathSciNet CrossRef
Brian E. Davies, Linear operators and their spectra, Cambridge University Press, Cambridge, 2007. MathSciNet CrossRef
Michael Demuth, Marcel Hansmann, Guy Katriel, On the discrete spectrum of non-selfadjoint operators, J. Funct. Anal. 257 (2009), no. 9, 2742-2759. MathSciNet CrossRef
Rupert L. Frank, Ari Laptev, Elliott H. Lieb, Robert Seiringer, Lieb-Thirring inequalities for Schrodinger operators with complex-valued potentials, Lett. Math. Phys. 77 (2006), no. 3, 309-316. MathSciNet CrossRef
Leonid Golinskii, Stanislas Kupin, On discrete spectrum of complex perturbations of finite band Schrodinger operators, in: Recent trends in analysis, Theta, Bucharest, 2013. MathSciNet
Marcel Hansmann, An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrodinger operators, Lett. Math. Phys. 98 (2011), no. 1, 79-95. MathSciNet CrossRef
Marcel Hansmann, Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators, Integral Equations Operator Theory 76 (2013), no. 2, 163-178. MathSciNet CrossRef
Tosio Kato, Perturbation theory for linear operators, Springer-Verlag New York, Inc., New York, 1966. MathSciNet
V. A. Marcenko, I. V. Ostrovs′kii, A characterization of the spectrum of the Hill operator, Mat. Sb. (N.S.) 97(139) (1975), no. 4(8), 540-606, 633-634. MathSciNet
Michael Reed, Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MathSciNet
Barry Simon, Trace ideals and their applications, American Mathematical Society, Providence, RI, 2005. MathSciNet