Percolations and phase transitions in a class of random spin systems

Authors

  • A. Daletskii Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK

DOI:

Keywords:

Quenched and annealed magnet, configuration space, Gibbs measure, continuum percolation

Abstract

The aim of this paper is to give a review of recent results of Yu. Kondratiev, Yu. Kozitsky, T. Pasurek and myself on the multiplicity of Gibbs states (phase transitions) in infinite spin systems on random configurations, and provide a `pedestrian' route following Georgii–Haggstrom approach to (closely related to phase transitions) percolation problems for a class of random point processes.

References

Leonid Bogachev, Alexei Daletskii, Gibbs cluster measures on configuration spaces, J. Funct. Anal. 264 (2013), no. 2, 508-550. MathSciNet CrossRef

Anton Bovier, Statistical mechanics of disordered systems, Cambridge University Press, Cambridge, 2006. MathSciNet CrossRef

Alexei Daletskii, Yuri Kondratiev, Yuri Kozitsky, Tanja Pasurek, Gibbs states on random configurations, J. Math. Phys. 55 (2014), no. 8, 083513, 17. MathSciNet CrossRef

Alexei Daletskii, Yuri Kondratiev, Yuri Kozitsky, Tanja Pasurek, A phase transition in a quenched amorphous ferromagnet, J. Stat. Phys. 156 (2014), no. 1, 156-176. MathSciNet CrossRef

D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes. Vol. I, Springer-Verlag, New York, 2003. MathSciNet

D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes. Vol. I, Springer-Verlag, New York, 2003. MathSciNet

Hans-Otto Georgii, Gibbs measures and phase transitions, Walter de Gruyter & Co., Berlin, 1988. MathSciNet CrossRef

H.-O. Georgii, O. Haggstrom, Phase transition in continuum Potts models, Comm. Math. Phys. 181 (1996), no. 2, 507-528. MathSciNet

Hans-Otto Georgii, Olle Haggstrom, Christian Maes, The random geometry of equilibrium phases, in: Phase transitions and critical phenomena, Vol. 18, Academic Press, San Diego, CA, 2001. MathSciNet CrossRef

Olle Haggstrom, Markov random fields and percolation on general graphs, Adv. in Appl. Probab. 32 (2000), no. 1, 39-66. MathSciNet CrossRef

Olav Kallenberg, Random measures, Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MathSciNet

Y. Kondratiev, Y. Kozitsky, T. Pasurek, Gibbs measures of disordered lattice systems with unbounded spins, Markov Process. Related Fields 18 (2012), no. 3, 553-582. MathSciNet

Yu. G. Kondratiev, O. V. Kutoviy, On the metrical properties of the configuration space, Math. Nachr. 279 (2006), no. 7, 774-783. MathSciNet CrossRef

Ronald Meester, Rahul Roy, Continuum percolation, Cambridge University Press, Cambridge, 1996. MathSciNet CrossRef

Mathew D. Penrose, On a continuum percolation model, Adv. in Appl. Probab. 23 (1991), no. 3, 536-556. MathSciNet CrossRef

Chris Preston, Random fields, Springer-Verlag, Berlin-New York, 1976. MathSciNet

Sidney I. Resnick, Extreme values, regular variation, and point processes, Springer-Verlag, New York, 1987. MathSciNet CrossRef

Silvano Romano, Valentin A. Zagrebnov, Orientational ordering transition in a continuous-spin ferrofluid, Phys. A 253 (1998), no. 1-4, 483-497. MathSciNet CrossRef

D. Ruelle, Superstable interactions in classical statistical mechanics, Comm. Math. Phys. 18 (1970), 127-159. MathSciNet

Daniel Raymond Wells, Some Moment Inequalities and a Result on Multivariable Unimodality, Thesis, Indiana University, 1977. MathSciNet

Downloads

Published

2015-09-25

Issue

Section

Articles

How to Cite

Daletskii, A. “Percolations and Phase Transitions in a Class of Random Spin Systems”. Methods of Functional Analysis and Topology, vol. 21, no. 3, Sept. 2015, pp. 225-36, https://zen.imath.kiev.ua/index.php/mfat/article/view/613.