Compressed resolvents of selfadjoint contractive exit space extensions and holomorphic operator-valued functions associated with them
DOI:
Keywords:
Selfadjoint extension, compressed resolvent, transfer functionAbstract
Contractive selfadjoint extensions of a Hermitian contraction $B$ in a Hilbert space $\mathfrak H$ with an exit in some larger Hilbert space $\mathfrak H\oplus\mathcal H$ are investigated. This leads to a new geometric approach for characterizing analytic properties of holomorphic operator-valued functions of Krein-Ovcharenko type, a class of functions whose study has been recently initiated by the authors. Compressed resolvents of such exit space extensions are also investigated leading to some new connections to transfer functions of passive discrete-time systems and related classes of holomorphic operator-valued functions.References
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces, Monographs and Studies in Mathematics, Vol. 9, 10, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1981.
William N. Anderson Jr., Shorted operators, SIAM J. Appl. Math. 20 (1971), 520-525. MathSciNet
W. N. Anderson Jr., R. J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl. 26 (1969), 576-594. MathSciNet
W. N. Anderson Jr., G. E. Trapp, Shorted operators. II, SIAM J. Appl. Math. 28 (1975), 60-71. MathSciNet
Yu. M. Arlinskii, A class of contractions in Hilbert space, Ukrain. Mat. Zh. 39 (1987), no. 6, 691-696, 813. MathSciNet
Yu. M. Arlinskii, Characteristic functions of operators of the class $C(alpha)$, Izv. Vyssh. Uchebn. Zaved. Mat. (1991), no. 2, 13-21. MathSciNet
Yury Arlinskii, The Kalman-Yakubovich-Popov inequality for passive discrete time-invariant systems, Oper. Matrices 2 (2008), no. 1, 15-51. MathSciNet CrossRef
Yuri Arlinskii, Sergey Belyi, Eduard Tsekanovskii, Conservative realizations of Herglotz-Nevanlinna functions, Birkhauser/Springer Basel AG, Basel, 2011. MathSciNet CrossRef
Yuri M. Arlinskii, Seppo Hassi, $Q$-functions and boundary triplets of nonnegative operators, in: Recent advances in inverse scattering, Schur analysis and stochastic processes, Birkhauser/Springer, Cham, 2015. MathSciNet
Yu. M. Arlinskii, S. Hassi, H. S. V. Snoo de, $Q$-functions of Hermitian contractions of Krei n-Ovcharenko type, Integral Equations Operator Theory 53 (2005), no. 2, 153-189. MathSciNet CrossRef
Yury Arlinskii, Seppo Hassi, Henk Snoo de, $Q$-functions of quasi-selfadjoint contractions, in: Operator theory and indefinite inner product spaces, Birkhauser, Basel, 2006. MathSciNet CrossRef
Yury M. Arlinskii, Seppo Hassi, Henk S. V. Snoo de, Parametrization of contractive block operator matrices and passive discrete-time systems, Complex Anal. Oper. Theory 1 (2007), no. 2, 211-233. MathSciNet CrossRef
Yury M. Arlinskii, Seppo Hassi, Henk S. V. Snoo de, Passive systems with a normal main operator and quasi-selfadjoint systems, Complex Anal. Oper. Theory 3 (2009), no. 1, 19-56. MathSciNet CrossRef
Yu. Arlinskii and E. Tsekanovskii, Non-self-adjoint contractive extensions of a Hermitian contraction and theorem of M. G. Krein, Uspekhi Mat. Nauk 37 (1982), no. 1, 131-132. (Russian); English transl. Russian Math. Surveys 37 (1982), no. 1, 151-152.
Yu. Arlinskii and E. Tsekanovskii, Quasi-self-adjoint contractive extensions of a Hermitian contraction, Teor. Funktsii, Funktsional. Anal. i Prilozhen. 50 (1988), 9-16. (Russian); English transl. J. Soviet Math. 49 (1990), no. 6, 1241-1247. CrossRef
D. Z. Arov, Passive linear steady-state dynamical systems, Sibirsk. Mat. Zh. 20 (1979), no. 2, 211-228, 457. MathSciNet
Earl A. Coddington, Selfadjoint subspace extensions of nondensely defined symmetric operators, Bull. Amer. Math. Soc. 79 (1973), 712-715. MathSciNet
Earl A. Coddington, Extension theory of formally normal and symmetric subspaces, American Mathematical Society, Providence, R.I., 1973. MathSciNet
V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. MathSciNet CrossRef
V. A. Derkach, M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141-242. MathSciNet CrossRef
Vladimir Derkach, Seppo Hassi, Mark Malamud, Henk Snoo de, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5351-5400. MathSciNet CrossRef
A. Dijksma, H. S. V. Snoo de, Self-adjoint extensions of symmetric subspaces, Pacific J. Math. 54 (1974), 71-100. MathSciNet
R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. MathSciNet
P. A. Fillmore, J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281. MathSciNet
Seppo Hassi, Mark Malamud, Henk Snoo de, On Krei ns extension theory of nonnegative operators, Math. Nachr. 274/275 (2004), 40-73. MathSciNet CrossRef
Tosio Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995. MathSciNet
M. G. Krein, On Hermitian operators with defect indices equal to Unity, Dokl. Akad. Nauk SSSR 43 (1944), no. 8, 339-342. (Russian)
M. G. Krein, Resolvents of an Hermitian operator with defect index $(m, m)$, Dokl. Akad. Nauk SSSR 52 (1946), 657-660. (Russian)
M. G. Krein, Theory of selfadjoint extensions of semibounded operators and its applications. I, Mat. Sb. 20 (1947), no. 3, 431-498. (Russian)
M. G. Krein, The description of all solutions of the truncated power moment problem and some problems of operator theory, Mat. Issled. 2 (1967), no. vyp. 2, 114-132. MathSciNet
M. G. Krein, G. K. Langer, The defect subspaces and generalized resolvents of a Hermitian operator in the space $Pi _kappa $, Funkcional. Anal. i Prilov zen 5 (1971), no. 2, 59-71. MathSciNet
M. G. Krein, G. K. Langer, The defect subspaces and generalized resolvents of a Hermitian operator in the space $Pi _kappa $, Funkcional. Anal. i Prilov zen 5 (1971), no. 3, 54-69. MathSciNet
M. G. Krein, I. E. Ovcarenko, $Q$-functions and $sc$-resolvents of nondensely defined Hermitian contractions, Sibirsk. Mat. v Z. 18 (1977), no. 5, 1032-1056, 1206. MathSciNet
H. Langer, B. Textorius, On generalized resolvents and $Q$-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math. 72 (1977), no. 1, 135-165. MathSciNet
Heinz Langer, Bjorn Textorius, Generalized resolvents of dual pairs of contractions, in: Invariant subspaces and other topics (Timic soara/Herculane, 1981), Birkhauser, Basel-Boston, Mass., 1982. MathSciNet
M. Neumark, Self-adjoint extensions of the second kind of a symmetric operator, Bull. Acad. Sci. URSS. Ser. Math. [Izvesti`a Akad. Nauk SSSR] 4 (1940), 53-104. MathSciNet
M. Neumark, Spectral functions of a symmetric operator, Bull. Acad. Sci. URSS. Ser. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 277-318. MathSciNet
M. A. Neumark, On spectral functions of a symmetric operator, Bull. Acad. Sci. URSS. Ser. Math. [Izvestia Akad. Nauk SSSR] 7 (1943), 285-296. MathSciNet
F. S. Rofe-Beketov, The numerical range of a linear relation and maximum relations, Teor. Funktsiui Funktsional. Anal. i Prilozhen. (1985), no. 44, 103-112. MathSciNet CrossRef
A. V. Straus, Generalized resolvents of symmetric operators, Izvestiya Akad. Nauk SSSR. Ser. Mat. 18 (1954), 51-86. MathSciNet
Konrad Schmudgen, On domains of powers of closed symmetric operators, J. Operator Theory 9 (1983), no. 1, 53-75. MathSciNet
Yu. L. Shmulyan, An operator Hellinger integral, Mat. Sb. (N.S.) 49 (1959), no. 4, 381-430. (Russian)
Ju. L. Smul′jan, Certain stability properties for analytic operator-valued functions, Mat. Zametki 20 (1976), no. 4, 511-520. MathSciNet
Bela Sz.-Nagy, Ciprian Foialfhooks, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akad'emiai Kiad'o, Budapest, 1970. MathSciNet
Sergey M. Zagorodnyuk, Generalized resolvents of symmetric and isometric operators: the Shtraus approach, Ann. Funct. Anal. 4 (2013), no. 1, 175-285. MathSciNet CrossRef