The projection spectral theorem and Jacobi fields

Authors

  • E. W. Lytvynov Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.

DOI:

Keywords:

Free L´evy white noise, Gaussian measure, Jacobi field, L´evy white noise, Poisson measure, projection spectral theorem

Abstract

We review several applications of Berezansky's projection spectral theorem to Jacobi fields in a symmetric Fock space, which lead to L\'evy white noise measures.

References

Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet

Yu. M. Berezanskii, The projection spectral theorem, Uspekhi Mat. Nauk 39 (1984), no. 4(238), 3-52. MathSciNet

Yu. M. Berezanskii, On the projection spectral theorem, Ukrain. Mat. Zh. 37 (1985), no. 2, 146-154, 269. MathSciNet

Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, American Mathematical Society, Providence, RI, 1986. MathSciNet

Yu. M. Berezansky, Spectral approach to white noise analysis, in: Dynamics of complex and irregular systems (Bielefeld, 1991), World Sci. Publ., River Edge, NJ, 1993. MathSciNet

Yurij M. Berezansky, Poisson measure as the spectral measure of Jacobi field, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 1, 121-139. MathSciNet CrossRef

Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef

Ju. M. Berezans′kii, V. D. Kovsmanenko, Axiomatic field theory in terms of operator Jacobi matrices, Teoret. Mat. Fiz. 8 (1971), no. 2, 175-191. MathSciNet

Yu. M. Berezanskii, V. O. Livinskii, E. V. Litvinov, A spectral approach to the analysis of white noise, Ukrain. Mat. Zh. 46 (1994), no. 3, 177-197. MathSciNet CrossRef

Marek Bo.zejko, Eugene Lytvynov, Meixner class of non-commutative generalized stochastic processes with freely independent values. I. A characterization, Comm. Math. Phys. 292 (2009), no. 1, 99-129. MathSciNet CrossRef

Marek Bo.zejko, Eugene Lytvynov, Meixner class of non-commutative generalized stochastic processes with freely independent values II. The generating function, Comm. Math. Phys. 302 (2011), no. 2, 425-451. MathSciNet CrossRef

S. Das, Orthogonal Decompositions for Generalized Stochastic Processes with Independent Values, PhD Dissertation, Swansea University, 2012.

I. M. Gelfand, Ya. N. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis, Academic Press, New York - London, 1964, 1964. MathSciNet

Takeyuki Hida, Hui-Hsiung Kuo, Jurgen Potthoff, Ludwig Streit, White noise, Kluwer Academic Publishers Group, Dordrecht, 1993. MathSciNet CrossRef

Yoshifusa Ito, Izumi Kubo, Calculus on Gaussian and Poisson white noises, Nagoya Math. J. 111 (1988), 41-84. MathSciNet CrossRef

Olav Kallenberg, Random measures, Akademie-Verlag, Berlin; Academic Press, London-New York, 1976. MathSciNet

Y. Kondratiev, E. Lytvynov, A. Vershik, Laplace operators on the cone of Radon measures, in preparation.

E. W. Lytvynov, Multiple Wiener integrals and non-Gaussian white noises: a Jacobi field approach, Methods Funct. Anal. Topology 1 (1995), no. 1, 61-85. MathSciNet

Eugene Lytvynov, Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density, Rev. Math. Phys. 14 (2002), no. 10, 1073-1098. MathSciNet CrossRef

Eugene Lytvynov, Determinantal point processes with $J$-Hermitian correlation kernels, Ann. Probab. 41 (2013), no. 4, 2513-2543. MathSciNet CrossRef

Roland Speicher, Free probability theory and non-crossing partitions, Sem. Lothar. Combin. 39 (1997), Art. B39c, 38 pp. (electronic). MathSciNet

Natalia Tsilevich, Anatoly Vershik, Marc Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process, J. Funct. Anal. 185 (2001), no. 1, 274-296. MathSciNet CrossRef

Downloads

Published

2015-06-25

Issue

Section

Articles

How to Cite

Lytvynov, E. W. “The Projection Spectral Theorem and Jacobi Fields”. Methods of Functional Analysis and Topology, vol. 21, no. 2, June 2015, pp. 188–198, https://zen.imath.kiev.ua/index.php/mfat/article/view/611.