The projection spectral theorem and Jacobi fields
DOI:
Keywords:
Free L´evy white noise, Gaussian measure, Jacobi field, L´evy white noise, Poisson measure, projection spectral theoremAbstract
We review several applications of Berezansky's projection spectral theorem to Jacobi fields in a symmetric Fock space, which lead to L\'evy white noise measures.References
Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
Yu. M. Berezanskii, The projection spectral theorem, Uspekhi Mat. Nauk 39 (1984), no. 4(238), 3-52. MathSciNet
Yu. M. Berezanskii, On the projection spectral theorem, Ukrain. Mat. Zh. 37 (1985), no. 2, 146-154, 269. MathSciNet
Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, American Mathematical Society, Providence, RI, 1986. MathSciNet
Yu. M. Berezansky, Spectral approach to white noise analysis, in: Dynamics of complex and irregular systems (Bielefeld, 1991), World Sci. Publ., River Edge, NJ, 1993. MathSciNet
Yurij M. Berezansky, Poisson measure as the spectral measure of Jacobi field, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 1, 121-139. MathSciNet CrossRef
Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef
Ju. M. Berezans′kii, V. D. Kovsmanenko, Axiomatic field theory in terms of operator Jacobi matrices, Teoret. Mat. Fiz. 8 (1971), no. 2, 175-191. MathSciNet
Yu. M. Berezanskii, V. O. Livinskii, E. V. Litvinov, A spectral approach to the analysis of white noise, Ukrain. Mat. Zh. 46 (1994), no. 3, 177-197. MathSciNet CrossRef
Marek Bo.zejko, Eugene Lytvynov, Meixner class of non-commutative generalized stochastic processes with freely independent values. I. A characterization, Comm. Math. Phys. 292 (2009), no. 1, 99-129. MathSciNet CrossRef
Marek Bo.zejko, Eugene Lytvynov, Meixner class of non-commutative generalized stochastic processes with freely independent values II. The generating function, Comm. Math. Phys. 302 (2011), no. 2, 425-451. MathSciNet CrossRef
S. Das, Orthogonal Decompositions for Generalized Stochastic Processes with Independent Values, PhD Dissertation, Swansea University, 2012.
I. M. Gelfand, Ya. N. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis, Academic Press, New York - London, 1964, 1964. MathSciNet
Takeyuki Hida, Hui-Hsiung Kuo, Jurgen Potthoff, Ludwig Streit, White noise, Kluwer Academic Publishers Group, Dordrecht, 1993. MathSciNet CrossRef
Yoshifusa Ito, Izumi Kubo, Calculus on Gaussian and Poisson white noises, Nagoya Math. J. 111 (1988), 41-84. MathSciNet CrossRef
Olav Kallenberg, Random measures, Akademie-Verlag, Berlin; Academic Press, London-New York, 1976. MathSciNet
Y. Kondratiev, E. Lytvynov, A. Vershik, Laplace operators on the cone of Radon measures, in preparation.
E. W. Lytvynov, Multiple Wiener integrals and non-Gaussian white noises: a Jacobi field approach, Methods Funct. Anal. Topology 1 (1995), no. 1, 61-85. MathSciNet
Eugene Lytvynov, Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density, Rev. Math. Phys. 14 (2002), no. 10, 1073-1098. MathSciNet CrossRef
Eugene Lytvynov, Determinantal point processes with $J$-Hermitian correlation kernels, Ann. Probab. 41 (2013), no. 4, 2513-2543. MathSciNet CrossRef
Roland Speicher, Free probability theory and non-crossing partitions, Sem. Lothar. Combin. 39 (1997), Art. B39c, 38 pp. (electronic). MathSciNet
Natalia Tsilevich, Anatoly Vershik, Marc Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process, J. Funct. Anal. 185 (2001), no. 1, 274-296. MathSciNet CrossRef