Fractional contact model in the continuum

Authors

  • Yu. G. Kondratiev Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine
  • A. N. Kochubei Fakultat fur Mathematik, Universitat Bielefeld, Bielefeld, 33615, Germany

DOI:

Keywords:

Contact model in the continuum, correlation functions, Caputo-Djrbashian fractional derivative, Mittag-Leffler function

Abstract

We consider the evolution of correlation functions in a non-Markov version of the contact model in the continuum. The memory effects are introduced by assuming the fractional evolution equation for the statistical dynamics. This leads to a behavior of time-dependent correlation functions, essentially different from the one known for the standard contact model.

References

Emilia G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal. 3 (2000), no. 3, 213-230. MathSciNet

Mkhitar M. Djrbashian, Harmonic analysis and boundary value problems in the complex domain, Birkhauser Verlag, Basel, 1993. MathSciNet CrossRef

Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Individual based model with competition in spatial ecology, SIAM J. Math. Anal. 41 (2009), no. 1, 297-317. MathSciNet CrossRef

Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Semigroup approach to birth-and-death stochastic dynamics in continuum, J. Funct. Anal. 262 (2012), no. 3, 1274-1308. MathSciNet CrossRef

Dmitri L. Finkelshtein, Yuri G. Kondratiev, Maria Joao Oliveira, Markov evolutions and hierarchical equations in the continuum. I. One-component systems, J. Evol. Equ. 9 (2009), no. 2, 197-233. MathSciNet CrossRef

Rudolf Gorenflo, Yuri Luchko, Francesco Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal. 2 (1999), no. 4, 383-414. MathSciNet

Valentin Keyantuo, Carlos Lizama, Mahamadi Warma, Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations, Abstr. Appl. Anal. (2013), Art. ID 614328, 11. MathSciNet

Anatoly A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006. MathSciNet

Yuri G. Kondratiev, Tobias Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), no. 2, 201-233. MathSciNet CrossRef

Yuri Kondratiev, Oleksandr Kutoviy, Sergey Pirogov, Correlation functions and invariant measures in continuous contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), no. 2, 231-258. MathSciNet CrossRef

Yuri Kondratiev, Anatoli Skorokhod, On contact processes in continuum, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), no. 2, 187-198. MathSciNet CrossRef

Downloads

Published

2015-06-25

Issue

Section

Articles

How to Cite

Kondratiev, Yu. G., and A. N. Kochubei. “Fractional Contact Model in the Continuum”. Methods of Functional Analysis and Topology, vol. 21, no. 2, June 2015, pp. 179–187, https://zen.imath.kiev.ua/index.php/mfat/article/view/610.