Fractional contact model in the continuum
DOI:
Keywords:
Contact model in the continuum, correlation functions, Caputo-Djrbashian fractional derivative, Mittag-Leffler functionAbstract
We consider the evolution of correlation functions in a non-Markov version of the contact model in the continuum. The memory effects are introduced by assuming the fractional evolution equation for the statistical dynamics. This leads to a behavior of time-dependent correlation functions, essentially different from the one known for the standard contact model.References
Emilia G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal. 3 (2000), no. 3, 213-230. MathSciNet
Mkhitar M. Djrbashian, Harmonic analysis and boundary value problems in the complex domain, Birkhauser Verlag, Basel, 1993. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Individual based model with competition in spatial ecology, SIAM J. Math. Anal. 41 (2009), no. 1, 297-317. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Semigroup approach to birth-and-death stochastic dynamics in continuum, J. Funct. Anal. 262 (2012), no. 3, 1274-1308. MathSciNet CrossRef
Dmitri L. Finkelshtein, Yuri G. Kondratiev, Maria Joao Oliveira, Markov evolutions and hierarchical equations in the continuum. I. One-component systems, J. Evol. Equ. 9 (2009), no. 2, 197-233. MathSciNet CrossRef
Rudolf Gorenflo, Yuri Luchko, Francesco Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal. 2 (1999), no. 4, 383-414. MathSciNet
Valentin Keyantuo, Carlos Lizama, Mahamadi Warma, Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations, Abstr. Appl. Anal. (2013), Art. ID 614328, 11. MathSciNet
Anatoly A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006. MathSciNet
Yuri G. Kondratiev, Tobias Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), no. 2, 201-233. MathSciNet CrossRef
Yuri Kondratiev, Oleksandr Kutoviy, Sergey Pirogov, Correlation functions and invariant measures in continuous contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), no. 2, 231-258. MathSciNet CrossRef
Yuri Kondratiev, Anatoli Skorokhod, On contact processes in continuum, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), no. 2, 187-198. MathSciNet CrossRef