Some applications of almost analytic extensions to operator bounds in trace ideals
DOI:
Keywords:
Almost analytic extensions, trace ideals, operator boundsAbstract
Using the Davies-Helffer-Sjostrand functional calculus based on almost analytic extensions, we address the following problem: Given a self-adjoint operator $S$ in $\mathcal H$, and functions $f$ in an appropriate class, for instance, $f \in C_0^{\infty}(\mathbb R)$, how to control the norm $\|f(S)\|_{\mathcal B(\mathcal H)}$ in terms of the norm of the resolvent of $S$, $\|(S - z_0 I_{\mathcal H})^{-1}\|_{\mathcal B(\mathcal H)}$, for some $z_0 \in \mathbb C\backslash\mathbb R$. We are particularly interested in the case where $\mathcal B(\mathcal H)$ is replaced by a trace ideal, $\mathcal B_p(\mathcal H)$, $p \in [1,\infty)$.References
Andras Batkai, Eva Favsanga, The spectral mapping theorem for Davies functional calculus, Rev. Roumaine Math. Pures Appl. 48 (2003), no. 4, 365-372. MathSciNet
Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, American Mathematical Society, Providence, RI, 1986. MathSciNet
Yu. M. Berezansky, A. A. Kalyuzhnyi, Harmonic analysis in hypercomplex systems, Kluwer Academic Publishers, Dordrecht, 1998. MathSciNet CrossRef
Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef
Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 2, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef
Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vol. 1, Birkhauser Verlag, Basel-Boston-Berlin, 1996; 3rd ed., Institute of Mathematics NAS of Ukraine, Kyiv, 2010. (Russian edition: Vyshcha Shkola, Kiev, 1990)
Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vol. 2, Birkhauser Verlag, Basel-Boston-Berlin, 1996; 3rd ed., Institute of Mathematics NAS of Ukraine, Kyiv, 2010. (Russian edition: Vyshcha Shkola, Kiev, 1990)
Mikhail Sh. Birman, Michael Solomyak, Double operator integrals in a Hilbert space, Integral Equations Operator Theory 47 (2003), no. 2, 131-168. MathSciNet CrossRef
A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, On index theory for non-Fredholm operators: a $(1+1)$-dimensional example, Preprint, 2014.
A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, Trace formulas for a $(1+1)$-dimensional model operator, Preprint, 2014.
A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, On index theory for non-Fredholm operators: a $(2+1)$-dimensional example, in preparation.
A. Carey, F. Gesztesy, G. Levitina, R. Nichols, D. Potapov, F. Sukochev, and D. Zanin, in preparation. newpage
A. Carey, F. Gesztesy, G. Levitina, and F. Sukochev, A framework for index theory applicable to non-Fredholm operators, Preprint, 2014.
A. Carey, F. Gesztesy, D. Potapov, F. Sukochev, and Y. Tomilov, On the Witten index in terms of spectral shift functions; J. Analyse Math. (to appear) ArXiv:1404.0740
Gilles Carron, Thierry Coulhon, El-Maati Ouhabaz, Gaussian estimates and $L^ p$-boundedness of Riesz means, J. Evol. Equ. 2 (2002), no. 3, 299-317. MathSciNet CrossRef
Narinder S. Claire, Spectral mapping theorem for the Davies-Helffer-Sjostrand functional calculus, Zh. Mat. Fiz. Anal. Geom. 8 (2012), no. 3, 221-239, 296, 299. MathSciNet
E. B. Davies, The functional calculus, J. London Math. Soc. (2) 52 (1995), no. 1, 166-176. MathSciNet CrossRef
E. B. Davies, $L^ p$ spectral independence and $L^ 1$ analyticity, J. London Math. Soc. (2) 52 (1995), no. 1, 177-184. MathSciNet CrossRef
E. B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995. MathSciNet CrossRef
Mouez Dimassi, Spectral shift function in the large coupling constant limit, Ann. Henri Poincare 7 (2006), no. 3, 513-525. MathSciNet CrossRef
Mouez Dimassi, Anh Tuan Duong, Trace asymptotics formula for the Schrodinger operators with constant magnetic fields, J. Math. Anal. Appl. 416 (2014), no. 1, 427-448. MathSciNet CrossRef
Mouez Dimassi, Vesselin Petkov, Spectral shift function and resonances for non-semi-bounded and Stark Hamiltonians, J. Math. Pures Appl. (9) 82 (2003), no. 10, 1303-1342. MathSciNet CrossRef
Mouez Dimassi, Vesselin Petkov, Spectral shift function for operators with crossed magnetic and electric fields, Rev. Math. Phys. 22 (2010), no. 4, 355-380. MathSciNet CrossRef
Mouez Dimassi, Johannes Sjostrand, Trace asymptotics via almost analytic extensions, in: Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995), Birkh"auser Boston, Boston, MA, 1996. MathSciNet
Mouez Dimassi, Johannes Sjostrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. MathSciNet CrossRef
Mouez Dimassi, Maher Zerzeri, A time-independent approach for the study of spectral shift function, C. R. Math. Acad. Sci. Paris 350 (2012), no. 7-8, 375-378. MathSciNet CrossRef
E. M. Dyn′kin, An operator calculus based on the Cauchy-Green formula, Zap. Nauv cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 33-39. MathSciNet
E. M. Dyn′kin, The pseudoanalytic extension, J. Anal. Math. 60 (1993), 45-70. MathSciNet
Richard Froese, David Hasler, Wolfgang Spitzer, On the AC spectrum of one-dimensional random Schrodinger operators with matrix-valued potentials, Math. Phys. Anal. Geom. 13 (2010), no. 3, 219-233. MathSciNet CrossRef
J. Frohlich, M. Griesemer, I. M. Sigal, Spectral theory for the standard model of non-relativistic QED, Comm. Math. Phys. 283 (2008), no. 3, 613-646. MathSciNet CrossRef
Jose E. Gale, Pedro J. Miana, Tadeusz Pytlik, Spectral properties and norm estimates associated to the $C^ (k)_ c$-functional calculus, J. Operator Theory 48 (2002), no. 2, 385-418. MathSciNet
Jose E. Gale, Tadeusz Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, J. Funct. Anal. 150 (1997), no. 2, 307-355. MathSciNet CrossRef
C. Gerard, Sharp propagation estimates for $N$-particle systems, Duke Math. J. 67 (1992), no. 3, 483-515. MathSciNet CrossRef
Christian Gerard, A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254 (2008), no. 11, 2707-2724. MathSciNet CrossRef
Fritz Gesztesy, Yuri Latushkin, Konstantin A. Makarov, Fedor Sukochev, Yuri Tomilov, The index formula and the spectral shift function for relatively trace class perturbations, Adv. Math. 227 (2011), no. 1, 319-420. MathSciNet CrossRef
M. Griesemer, Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics, J. Funct. Anal. 210 (2004), no. 2, 321-340. MathSciNet CrossRef
H. R. Grumm, Two theorems about $scr C_p$, Rep. Mathematical Phys. 4 (1973), 211-215. MathSciNet
L. Hormander, Fourier Integral Operators: Lectures at the Nordic Summer School of Mathematics, 1969.
B. Helffer, J. Sjostrand, Equation de Schrodinger avec champ magnetique et equation de Harper, in: Schrodinger operators (So nderborg, 1988), Springer, Berlin, 1989. MathSciNet CrossRef
B. Helffer, J. Sjostrand, On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincare Phys. Theor. 52 (1990), no. 4, 303-375. MathSciNet CrossRef
Arne Jensen, Shu Nakamura, Mapping properties of functions of Schrodinger operators between $L^ p$-spaces and Besov spaces, in: Spectral and scattering theory and applications, Math. Soc. Japan, Tokyo, 1994. MathSciNet
Abdallah Khochman, Resonances and spectral shift function for the semi-classical Dirac operator, Rev. Math. Phys. 19 (2007), no. 10, 1071-1115. MathSciNet CrossRef
G. Levitina, D. Potapov, and F. Sukochev, private communication, January 2015.
Mircea Martin, Mihai Putinar, Lectures on hyponormal operators, Birkh"auser Verlag, Basel, 1989. MathSciNet CrossRef
Anders Melin, Johannes Sjostrand, Fourier integral operators with complex-valued phase functions, in: Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Springer, Berlin, 1975. MathSciNet
Sean ORourke, David Renfrew, Alexander Soshnikov, On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, J. Theoret. Probab. 26 (2013), no. 3, 750-780. MathSciNet CrossRef
Alessandro Pizzo, David Renfrew, Alexander Soshnikov, On finite rank deformations of Wigner matrices, Ann. Inst. Henri Poincare Probab. Stat. 49 (2013), no. 1, 64-94. MathSciNet CrossRef
Alexander Pushnitski, The spectral flow, the Fredholm index, and the spectral shift function, in: Spectral theory of differential operators, Amer. Math. Soc., Providence, RI, 2008. MathSciNet
Michael Reed, Barry Simon, Methods of modern mathematical physics. I, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. MathSciNet
Barry Simon, Trace ideals and their applications, American Mathematical Society, Providence, RI, 2005. MathSciNet
Johannes Sjostrand, Maciej Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. MathSciNet CrossRef
Erik Skibsted, Smoothness of $N$-body scattering amplitudes, Rev. Math. Phys. 4 (1992), no. 4, 619-658. MathSciNet CrossRef
Joachim Weidmann, Linear operators in Hilbert spaces, Springer-Verlag, New York-Berlin, 1980. MathSciNet
D. R. Yafaev, Mathematical scattering theory, American Mathematical Society, Providence, RI, 1992. MathSciNet
D. R. Yafaev, A trace formula for the Dirac operator, Bull. London Math. Soc. 37 (2005), no. 6, 908-918. MathSciNet CrossRef