Around Ovsyannikov's method
DOI:
Keywords:
Ovsyannikov’s method, scale of spaces, evolution equations, birth-and-deathdynamics, Vlasov scaling, kinetic equationAbstract
We study existence, uniqueness, and a limiting behavior of solutions to an abstract linear evolution equation in a scale of Banach spaces. The generator of the equation is a perturbation of the operator which satisfies the classical assumptions of Ovsyannikov's method by a generator of a $C_0$-semigroup acting in each of the spaces of the scale. The results are (slightly modified) abstract version of those considered in [10] for a particular equation. An application to a birth-and-death stochastic dynamics in the continuum is considered.References
E. A. Barkova, P. P. Zabreiko, The Cauchy problem for differential equations of fractional order with deteriorating right-hand sides, Differ. Uravn. 42 (2006), no. 8, 1132-1134, 1151. MathSciNet CrossRef
Tomas Dominguez Benavides, Generic existence of a solution for a differential equation in a scale of Banach spaces, Proc. Amer. Math. Soc. 86 (1982), no. 3, 477-484. MathSciNet CrossRef
Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, American Mathematical Society, Providence, RI, 1986. MathSciNet
Christoph Berns, Yuri Kondratiev, Yuri Kozitsky, Oleksandr Kutoviy, Kawasaki dynamics in continuum: micro- and mesoscopic descriptions, J. Dynam. Differential Equations 25 (2013), no. 4, 1027-1056. MathSciNet CrossRef
Christoph Berns, Yuri Kondratiev, Oleksandr Kutoviy, Construction of a state evolution for Kawasaki dynamics in continuum, Anal. Math. Phys. 3 (2013), no. 2, 97-117. MathSciNet CrossRef
Russel E. Caflisch, A simplified version of the abstract Cauchy-Kowalewski theorem with weak singularities, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 495-500. MathSciNet CrossRef
Klaus-Jochen Engel, Rainer Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York, 2000. MathSciNet
Dmitri Finkelshtein, Yuri Kondratiev, Regulation mechanisms in spatial stochastic development models, J. Stat. Phys. 136 (2009), no. 1, 103-115. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky, Glauber dynamics in continuum: a constructive approach to evolution of states, Discrete Contin. Dyn. Syst. 33 (2013), no. 4, 1431-1450. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky, Oleksandr Kutoviy, The statistical dynamics of a spatial logistic model and the related kinetic equation, Math. Models Methods Appl. Sci. 25 (2015), no. 2, 343-370. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Individual based model with competition in spatial ecology, SIAM J. Math. Anal. 41 (2009), no. 1, 297-317. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Vlasov scaling for stochastic dynamics of continuous systems, J. Stat. Phys. 141 (2010), no. 1, 158-178. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Semigroup approach to birth-and-death stochastic dynamics in continuum, J. Funct. Anal. 262 (2012), no. 3, 1274-1308. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Statistical dynamics of continuous systems: perturbative and approximative approaches, Arab. J. Math. (Springer) 4 (2015), no. 4, 255-300. MathSciNet CrossRef
D. Finkelshtein, Y. Kondratiev, O. Kutoviy, and E. Lytvynov, Binary jumps in continuum. rmII. Non-equilibrium process and a Vlasov-type scaling limit, J. Math. Phys. 52 (2011), 113301:1-27.
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Maria Joao Oliveira, Dynamical Widom-Rowlinson model and its mesoscopic limit, J. Stat. Phys. 158 (2015), no. 1, 57-86. MathSciNet CrossRef
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Elena Zhizhina, On an aggregation in birth-and-death stochastic dynamics, Nonlinearity 27 (2014), no. 6, 1105-1133. MathSciNet CrossRef
Dmitri L. Finkelshtein, Yuri G. Kondratiev, Maria Joao Oliveira, Markov evolutions and hierarchical equations in the continuum. I. One-component systems, J. Evol. Equ. 9 (2009), no. 2, 197-233. MathSciNet CrossRef
Dmitri L. Finkelshtein, Yuri G. Kondratiev, Maria Joao Oliveira, Glauber dynamics in the continuum via generating functionals evolution, Complex Anal. Oper. Theory 6 (2012), no. 4, 923-945. MathSciNet CrossRef
D. L. Finkelshtein, Yu. G. Kondratiev, M. J. Oliveira, Kawasaki dynamics in the continuum via generating functionals evolution, Methods Funct. Anal. Topology 18 (2012), no. 1, 55-67. MathSciNet
I. M. Gel′fand, G. E. Shilov, Generalized functions. Vol. 3: Theory of differential equations, Academic Press, New York-London, 1967. MathSciNet
Yuri G. Kondratiev, Tobias Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), no. 2, 201-233. MathSciNet CrossRef
Yuri Kondratiev, Oleksandr Kutoviy, Robert Minlos, On non-equilibrium stochastic dynamics for interacting particle systems in continuum, J. Funct. Anal. 255 (2008), no. 1, 200-227. MathSciNet CrossRef
Yuri G. Kondratiev, Oleksandr V. Kutoviy, Elena Zhizhina, Nonequilibrium Glauber-type dynamics in continuum, J. Math. Phys. 47 (2006), no. 11, 113501, 17. MathSciNet CrossRef
S. G. Lobanov, O. G. Smolyanov, Ordinary differential equations in locally convex spaces, Uspekhi Mat. Nauk 49 (1994), no. 3(297), 93-168. MathSciNet CrossRef
Heinrich P. Lotz, Uniform convergence of operators on $L^ infty$ and similar spaces, Math. Z. 190 (1985), no. 2, 207-220. MathSciNet CrossRef
L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 (1972), 561-576. MathSciNet
Takaaki Nishida, A note on a theorem of Nirenberg, J. Differential Geom. 12 (1977), no. 4, 629-633 (1978). MathSciNet CrossRef
L. V. Ovsjannikov, Singular operator in the scale of Banach spaces, Dokl. Akad. Nauk SSSR 163 (1965), 819-822. MathSciNet
R. S. Phillips, The adjoint semi-group, Pacific J. Math. 5 (1955), 269-283. MathSciNet
M. V. Safonov, The abstract Cauchy-Kovalevskaya theorem in a weighted Banach space, Comm. Pure Appl. Math. 48 (1995), no. 6, 629-637. MathSciNet CrossRef
Franccois Treves, Ovcyannikov theorem and hyperdifferential operators, Instituto de Matem'atica Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968. MathSciNet
Franccois Treves, An abstract nonlinear Cauchy-Kovalevska theorem, Trans. Amer. Math. Soc. 150 (1970), 77-92. MathSciNet
Jan Neerven van, The adjoint of a semigroup of linear operators, Springer-Verlag, Berlin, 1992. MathSciNet CrossRef
P. P. Zabreiko, Existence and uniqueness theorems for solutions of the Cauchy problem for differential equations with worsening operators, Dokl. Akad. Nauk BSSR 33 (1989), no. 12, 1068-1071, 1148. MathSciNet
Oleg Zubelevich, Abstract version of the Cauchy-Kowalewski problem, Cent. Eur. J. Math. 2 (2004), no. 3, 382-387 (electronic). MathSciNet CrossRef