Conservative L-systems and the Livšic function

Authors

  • K. A. Makarov Department of Mathematics, Troy State University, Troy, AL 36082, USA
  • S. Belyi Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
  • E. Tsekanovskii Department of Mathematics Niagara University, NY 14109, USA

DOI:

Keywords:

L-system, transfer function, impedance function, Herglotz-Nevanlinna function, Weyl-Titchmarsh function, Livsic function, characteristic function, Donoghue class, symmetricoperator, dissipative extension, von Neumann parameter

Abstract

We study the connection between the classes of (i) Livsic functions $s(z),$ i.e., the characteristic functions of densely defined symmetric operators $\dot A$ with deficiency indices $(1, 1)$; (ii) the characteristic functions $S(z)$ of a maximal dissipative extension $T$ of $\dot A,$ i.e., the Mobius transform of $s(z)$ determined by the von Neumann parameter $\kappa$ of the extension relative to an appropriate basis in the deficiency subspaces; and (iii) the transfer functions $W_\Theta(z)$ of a conservative L-system $\Theta$ with the main operator $T$. It is shown that under a natural hypothesis {the functions $S(z)$ and $W_\Theta(z)$ are reciprocal to each other. In particular, $W_\Theta(z)=\frac{1}{S(z)}=-\frac{1}{s(z)}$ whenever $\kappa=0$. It is established that the impedance function of a conservative L-system with the main operator $T$ belongs to the Donoghue class if and only if the von Neumann parameter vanishes ($\kappa=0$). Moreover, we introduce the generalized Donoghue class and obtain the criteria for an impedance function to belong to this class. We also obtain the representation of a function from this class via the Weyl-Titchmarsh function. All results are illustrated by a number of examples.

References

N. I. Akhiezer, I. M. Glazman, Theory of linear operators, Pitman (Advanced Publishing Program), 1981.

Alexandru Aleman, R. T. W Martin, William T. Ross, On a theorem of Livsic, J. Funct. Anal. 264 (2013), no. 4, 999-1048. MathSciNet CrossRef

Yuri Arlinskii, Sergey Belyi, Eduard Tsekanovskii, Conservative realizations of Herglotz-Nevanlinna functions, Birkh"auser/Springer Basel AG, Basel, 2011. MathSciNet CrossRef

Yury Arlinskii, Eduard Tsekanovskii, Constant $J$-unitary factor and operator-valued transfer functions, Discrete Contin. Dyn. Syst. (2003), no. suppl., 48-56. MathSciNet

S. V. Belyi, E. R. Tsekanovskii, Realization theorems for operator-valued $R$-functions, in: New results in operator theory and its applications, Birkh"auser, Basel, 1997. MathSciNet

Ju. M. Berezans′kii, Spaces with negative norm, Uspehi Mat. Nauk 18 (1963), no. 1 (109), 63-96. MathSciNet

Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet

M. S. Brodskii, Triangular and Jordan representations of linear operators, American Mathematical Society, Providence, R.I., 1971. MathSciNet

M. S. Brodskii, M. S. Livvsic, Spectral analysis of non-self-adjoint operators and intermediate systems, Uspehi Mat. Nauk (N.S.) 13 (1958), no. 1(79), 3-85. MathSciNet

V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. MathSciNet CrossRef

William F. Donoghue Jr., On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559-579. MathSciNet

Fritz Gesztesy, Konstantin A. Makarov, Eduard Tsekanovskii, An addendum to Kreins formula, J. Math. Anal. Appl. 222 (1998), no. 2, 594-606. MathSciNet CrossRef

Fritz Gesztesy, Eduard Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61-138. MathSciNet CrossRef

A. N. Kovcubei, Characteristic functions of symmetric operators and their extensions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 15 (1980), no. 3, 219-232, 247. MathSciNet

M. S. Livvsic, On a class of linear operators in Hilbert space, Amer. Math. Soc. Transl. (2) 13 (1960), 61-83. MathSciNet

M. S. Lovvsic, On the spectral resolution of linear non-selfadjoint operators, Amer. Math. Soc. Transl. (2) 5 (1957), 67-114. MathSciNet

M. S. Livvsic, Operatory, kolebaniya, volny. Otkrytye sistemy, Izdat. ``Nauka'', Moscow, 1966. MathSciNet

K. A. Makarov, E. Tsekanovskii, On the Weyl-Titchmarsh and Livv sic functions, in: Spectral analysis, differential equations and mathematical physics: a festschrift in honor of Fritz Gesztesys 60th birthday, Amer. Math. Soc., Providence, RI, 2013. MathSciNet CrossRef

K. A. Makarov, E. Tsekanovskii, On the addition and multiplication theorems, in: Recent advances in inverse scattering, Schur analysis and stochastic processes, Birkh"auser/Springer, Cham, 2015. MathSciNet

M. A. Naimark, Linear differential operators. Part II: Linear differential operators in Hilbert space, Frederick Ungar Publishing Co., New York, 1968. MathSciNet

A. V. Straus, Extensions and characteristic function of a symmetric operator, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 186-207. MathSciNet

E. R. Cekanovskii, The description and the uniqueness of generalized extensions of quasi-Hermitian operators, Funkcional. Anal. i Prilov zen. 3 (1969), no. 1, 95-96. MathSciNet

E. R. Tsekanovskii, Yu. L. Smuljan, The theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions, Russian Math. Surv. 31 (1977), 73-131.

Downloads

Published

2015-06-25

Issue

Section

Articles

How to Cite

Makarov, K. A., et al. “Conservative L-Systems and the Livšic Function”. Methods of Functional Analysis and Topology, vol. 21, no. 2, June 2015, pp. 104-33, https://zen.imath.kiev.ua/index.php/mfat/article/view/606.