Scale-invariant self-adjoint extensions of scale-invariant symmetric operators: continuous versus discrete
DOI:
Keywords:
q-difference operator, self-adjoint, scale-invariant, discrete spectrum, simple spectrumAbstract
We continue our study of a $q$-difference version of a second-order differential operator which depends on a real parameter. This version was introduced in our previous three articles on the subject. First we study general symmetric and scale-invariant operators on a Hilbert space. We show that if the index of defect of the operator under consideration is $(1,1)$, then the operator either does not admit any scale-invariant self-adjoint extension, or it admits exactly one scale-invariant self-adjoint extension, or it admits exactly two scale-invariant self-adjoint extensions, or all self-adjoint extensions are scale invariant. We then apply these results to the differential operator and the corresponding difference operator under consideration. For the continuous case, we show that the interval of the parameter, for which the differential operator is not semi-bounded, contains an infinite sequence of values for which all self-adjoint extensions are scale-invariant, while for the remaining values of the parameter from that interval, there are no scale-invariant self-adjoint extensions. For the corresponding difference operator, we show that if it is not semi-bounded, then it does not admit any scale-invariant self-adjoint extension. We also show that both differential and difference operators, at value(s) of the parameter that cor espond to the endpoint(s) of the interval(s) of semi-boundedness, have exactly one scale-invariant self-adjoint extension.References
Milton Abramowitz, Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MathSciNet
N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993. MathSciNet
G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Tom II. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny., Spravochnaya Matematicheskaya Biblioteka, Nauka, Moscow [Higher transcendental functions. Vol. II. Bessel functions, parabolic cylinder functions, orthogonal polynomials. Translated from the English by N. Ja. Vilenkin, Second edition, unrevised. Mathematical Reference Library], 1974. MathSciNet
Borislava Bekker, Miron B. Bekker, On selfadjoint homogeneous operators, Complex Anal. Oper. Theory 7 (2013), no. 1, 9-31. MathSciNet CrossRef
Miron B. Bekker, On a class of nondensely defined Hermitian contractions, Adv. Dyn. Syst. Appl. 2 (2007), no. 2, 141-165. MathSciNet
Miron B. Bekker, Martin J. Bohner, Alexander N. Herega, Hristo Voulov, Spectral analysis of a $q$-difference operator, J. Phys. A 43 (2010), no. 14, 145207, 15. MathSciNet CrossRef
Miron B. Bekker, Martin J. Bohner, Hristo Voulov, A $q$-difference operator with discrete and simple spectrum, Methods Funct. Anal. Topology 17 (2011), no. 4, 281-294. MathSciNet
Miron B. Bekker, Martin J. Bohner, Hristo Voulov, Extreme self-adjoint extensions of a semibounded $q$-difference operator, Math. Nachr. 287 (2014), no. 8-9, 869-884. MathSciNet CrossRef
Nelson Dunford, Jacob T. Schwartz, Linear operators. Part II, John Wiley & Sons, Inc., New York, 1988. MathSciNet
Seppo Hassi, Sergii Kuzhel, On symmetries in the theory of finite rank singular perturbations, J. Funct. Anal. 256 (2009), no. 3, 777-809. MathSciNet CrossRef
A. N. Kocubei, Symmetric operators commuting with a family of unitary operators, Funktsional. Anal. i Prilozhen. 13 (1979), no. 4, 77-78. MathSciNet
M. G. Krein, Ju. L. Smul′jan, Fractional linear transformations with operator coefficients, Mat. Issled 2 (1967), no. vyp. 3, 64-96. MathSciNet
A. V. Kuzhel, S. A. Kuzhel, Regular extensions of Hermitian operators, VSP, Utrecht, 1998. MathSciNet
K. A. Makarov, E. Tsekanovskii, On $mu$-scale invariant operators, Methods Funct. Anal. Topology 13 (2007), no. 2, 181-186. MathSciNet
M. A. Naimark, Lineinye differentsialnye operatory, Izdat. ``Nauka'', Moscow, 1969. MathSciNet
Ju. L. Smul′jan, Operator balls, Integral Equations Operator Theory 13 (1990), no. 6, 864-882. MathSciNet CrossRef
Joachim Weidmann, Spectral theory of ordinary differential operators, Springer-Verlag, Berlin, 1987. MathSciNet