Smooth functions on 2-torus whose Kronrod-Reeb graph contains a cycle
DOI:
Keywords:
Diffeomorphism, Morse function, homotopy typeAbstract
Let $f:M\to \mathbb{R}$ be a Morse function on a connected compact surface $M$, and $\mathcal{S}(f)$ and $\mathcal{O}(f)$ be respectively the stabilizer and the orbit of $f$ with respect to the right action of the group of diffeomorphisms $\mathcal{D}(M)$. In a series of papers the first author described the homotopy types of connected components of $\mathcal{S}(f)$ and $\mathcal{O}(f)$ for the cases when $M$ is either a $2$-disk or a cylinder or $\chi(M)<0$. Moreover, in two recent papers the authors considered special classes of smooth functions on $2$-torus $T^2$ and shown that the computations of $\pi_1\mathcal{O}(f)$ for those functions reduces to the cases of $2$-disk and cylinder.In the present paper we consider another class of Morse functions $f:T^2\to\mathbb{R}$ whose KR-graphs have exactly one cycle and prove that for every such function there exists a subsurface $Q\subset T^2$, diffeomorphic with a cylinder, such that $\pi_1\mathcal{O}(f)$ is expressed via the fundamental group $\pi_1\mathcal{O}(f|_{Q})$ of the restriction of $f$ to $Q$.
This result holds for a larger class of smooth functions $f:T^2\to \mathbb{R}$ having the following property: for every critical point $z$ of $f$ the germ of $f$ at $z$ is smoothly equivalent to a homogeneous polynomial $\mathbb{R}^2\to \mathbb{R}$ without multiple factors.
References
A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, ``Nauka'', Moscow, 1997. MathSciNet
A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, ``Nauka'', Moscow, 1989. MathSciNet
Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MathSciNet
A. S. Kronrod, On functions of two variables, Uspehi Matem. Nauk (N.S.) 5 (1950), no. 1(35), 24-134. MathSciNet
E. A. Kudryavtseva, Realization of smooth functions on surfaces as height functions, Mat. Sb. 190 (1999), no. 3, 29-88. MathSciNet CrossRef
E. A. Kudryavtseva, The topology of spaces of Morse functions on surfaces, Math. Notes 92 (2012), no. 1-2, 219-236. MathSciNet CrossRef
E. A. Kudryavtseva, On the homotopy type of spaces of Morse functions on surfaces, Mat. Sb. 204 (2013), no. 1, 79-118. MathSciNet CrossRef
E. V. Kulinich, On topologically equivalent Morse functions on surfaces, Methods Funct. Anal. Topology 4 (1998), no. 1, 59-64. MathSciNet
Sergey Maksymenko, Smooth shifts along trajectories of flows, Topology Appl. 130 (2003), no. 2, 183-204. MathSciNet CrossRef
Sergiy Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom. 29 (2006), no. 3, 241-285. MathSciNet CrossRef
Sergiy Maksymenko, Functions on surfaces and incompressible subsurfaces, Methods Funct. Anal. Topology 16 (2010), no. 2, 167-182. MathSciNet
Sergiy Maksymenko, Functions with isolated singularities on surfaces, Geometry and Topology of Functions on Manifolds, Zb. prac Inst. mat. NAN Ukr., Kyiv 7 (2010), no. 4, 7-66.
S. I. Maksimenko, Homotopic types of right stabilizers and orbits of smooth functions on surfaces, Ukrainian Math. J. 64 (2013), no. 9, 1350-1369. MathSciNet CrossRef
Sergiy Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeomorphisms, 2014, arXiv:math/1311.3347.
Sergiy Maksymenko, Finiteness of homotopy types of right orbits of Morse functions on surfaces, 2014, arXiv:math/1409.4319.
Sergiy Maksymenko, Structure of fundamental groups of orbits of smooth functions on surfaces, 2014, arXiv:math/1408.2612.
S. I. Maksymenko, B. G. Feshchenko, Homotopic properties of the spaces of smooth functions on a 2-torus, Ukrainian Math. J. 66 (2015), no. 9, 1346-1353. MathSciNet CrossRef
Sergiy Maksymenko and Bogdan Feshchenko, Orbits of smooth functions on 2-torus and their homotopy types, 2014, arXiv:math/1409.0502.
Yasutaka Masumoto, Osamu Saeki, A smooth function on a manifold with given Reeb graph, Kyushu J. Math. 65 (2011), no. 1, 75-84. MathSciNet CrossRef
Georges Reeb, Sur certaines proprietes topologiques des varietes feuilletees, Hermann & Cie., Paris, 1952. MathSciNet
Francis Sergeraert, Un theor`eme de fonctions implicites sur certains espaces de Frechet et quelques applications, Ann. Sci. Ecole Norm. Sup. (4) 5 (1972), 599-660. MathSciNet
V. V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukrain. Mat. Zh. 55 (2003), no. 5, 687-700. MathSciNet CrossRef
V. V. Sharko, About Kronrod-Reeb graph of a function on a manifold, Methods Funct. Anal. Topology 12 (2006), no. 4, 389-396. MathSciNet