Topological equivalence to a projection

Authors

  • Yu. Yu. Soroka Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine
  • V. V. Sharko Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 

DOI:

Keywords:

Topological equivalence, projection

Abstract

We present a necessary and sufficient condition for a continuous function on a plane to be topologically equivalent to a projection onto one of the coordinates.

References

V. I. Arnol′d, Topological classification of Morse polynomials, Tr. Mat. Inst. Steklova 268 (2010), no. Differentsialnye Uravneniya i Topologiya. I, 40-55. MathSciNet CrossRef

William M. Boothby, The topology of the level curves of harmonic functions with critical points, Amer. J. Math. 73 (1951), 512-538. MathSciNet

William M. Boothby, The topology of regular curve families with multiple saddle points, Amer. J. Math. 73 (1951), 405-438. MathSciNet

Wilfred Kaplan, Regular curve-families filling the plane, I, Duke Math. J. 7 (1940), 154-185. MathSciNet

James A. Jenkins, Marston Morse, Contour equivalent pseudoharmonic functions and pseudoconjugates, Amer. J. Math. 74 (1952), 23-51. MathSciNet

James A. Jenkins, Marston Morse, Topological methods on Riemann surfaces. Pseudoharmonic functions, in: Contributions to the theory of Riemann surfaces, Princeton University Press, Princeton, N. J., 1953. MathSciNet

James Jenkins, Marston Morse, Conjugate nets on an open Riemann surface, in: Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955. MathSciNet

Marston Morse, The topology of pseudo-harmonic functions, Duke Math. J. 13 (1946), 21-42. MathSciNet

Marston Morse, Topological Methods in the Theory of Functions of a Complex Variable, Princeton University Press, Princeton, N. J., 1947. MathSciNet

A. A. Oshemkov, Morse functions on two-dimensional surfaces. Coding of singularities, Trudy Mat. Inst. Steklov. 205 (1994), no. Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem, 131-140. MathSciNet

E. Polulyakh, I. Yurchuk, On the pseudo-harmonic functions defined on a disk, Proceedings of the Institute of Mathematics of NAS of Ukraine, Kyiv, vol. 8, 2009. MathSciNet

V. V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukrain. Mat. Zh. 55 (2003), no. 5, 687-700. MathSciNet CrossRef

V. V. Sharko, Topological equivalence of harmonic polynomials, Zb. prac Inst. mat. NAN Ukr., Kyiv 10 (2013), no. 4-5, 542-551. (Russian)

Downloads

Published

2015-03-25

Issue

Section

Articles

How to Cite

Soroka, Yu. Yu., and V. V. Sharko. “Topological Equivalence to a Projection”. Methods of Functional Analysis and Topology, vol. 21, no. 1, Mar. 2015, pp. 3-5, https://zen.imath.kiev.ua/index.php/mfat/article/view/596.