Topological equivalence to a projection
DOI:
Keywords:
Topological equivalence, projectionAbstract
We present a necessary and sufficient condition for a continuous function on a plane to be topologically equivalent to a projection onto one of the coordinates.References
V. I. Arnol′d, Topological classification of Morse polynomials, Tr. Mat. Inst. Steklova 268 (2010), no. Differentsialnye Uravneniya i Topologiya. I, 40-55. MathSciNet CrossRef
William M. Boothby, The topology of the level curves of harmonic functions with critical points, Amer. J. Math. 73 (1951), 512-538. MathSciNet
William M. Boothby, The topology of regular curve families with multiple saddle points, Amer. J. Math. 73 (1951), 405-438. MathSciNet
Wilfred Kaplan, Regular curve-families filling the plane, I, Duke Math. J. 7 (1940), 154-185. MathSciNet
James A. Jenkins, Marston Morse, Contour equivalent pseudoharmonic functions and pseudoconjugates, Amer. J. Math. 74 (1952), 23-51. MathSciNet
James A. Jenkins, Marston Morse, Topological methods on Riemann surfaces. Pseudoharmonic functions, in: Contributions to the theory of Riemann surfaces, Princeton University Press, Princeton, N. J., 1953. MathSciNet
James Jenkins, Marston Morse, Conjugate nets on an open Riemann surface, in: Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955. MathSciNet
Marston Morse, The topology of pseudo-harmonic functions, Duke Math. J. 13 (1946), 21-42. MathSciNet
Marston Morse, Topological Methods in the Theory of Functions of a Complex Variable, Princeton University Press, Princeton, N. J., 1947. MathSciNet
A. A. Oshemkov, Morse functions on two-dimensional surfaces. Coding of singularities, Trudy Mat. Inst. Steklov. 205 (1994), no. Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem, 131-140. MathSciNet
E. Polulyakh, I. Yurchuk, On the pseudo-harmonic functions defined on a disk, Proceedings of the Institute of Mathematics of NAS of Ukraine, Kyiv, vol. 8, 2009. MathSciNet
V. V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukrain. Mat. Zh. 55 (2003), no. 5, 687-700. MathSciNet CrossRef
V. V. Sharko, Topological equivalence of harmonic polynomials, Zb. prac Inst. mat. NAN Ukr., Kyiv 10 (2013), no. 4-5, 542-551. (Russian)