Nonzero capacity sets and dense subspaces in scales of Sobolev spaces

Authors

  • V. D. Koshmanenko National Technical University of Ukraine (KPI), 37 Peremogy Av., Kyiv, 03056, Ukraine https://orcid.org/0000-0003-0411-4059
  • M. E. Dudkin Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine 18/02/2014

DOI:

Keywords:

Singular perturbations, rigged Hilbert spaces, capacity, Berezansky canonical isomorphisms, Sobolev spaces, dense subspaces

Abstract

We show that for a compact set $K\subset{\mathbb R}^n$ of nonzero $\alpha$-capacity, $C_\alpha(K)>0$, $\alpha\geq 1$, the subspace $\overset{\circ}{W}{^{\alpha,2}}(\Omega)$, $\Omega={\mathbb R}^n\setminus K$ in ${W}{^{\alpha,2}}({\mathbb R}^n)$ is dense in $W^{m,2}({\mathbb R}^n)$, $m\leq\alpha-1$, iff the $m$-capacity of $K$ is zero, $C_{m}(K)=0$.

Downloads

Published

2014-09-25

Issue

Section

Articles

How to Cite

Koshmanenko, V. D., and M. E. Dudkin. “Nonzero Capacity Sets and Dense Subspaces in Scales of Sobolev Spaces”. Methods of Functional Analysis and Topology, vol. 20, no. 3, Sept. 2014, pp. 213-8, https://zen.imath.kiev.ua/index.php/mfat/article/view/580.