Nonzero capacity sets and dense subspaces in scales of Sobolev spaces
DOI:
Keywords:
Singular perturbations, rigged Hilbert spaces, capacity, Berezansky canonical isomorphisms, Sobolev spaces, dense subspacesAbstract
We show that for a compact set $K\subset{\mathbb R}^n$ of nonzero $\alpha$-capacity, $C_\alpha(K)>0$, $\alpha\geq 1$, the subspace $\overset{\circ}{W}{^{\alpha,2}}(\Omega)$, $\Omega={\mathbb R}^n\setminus K$ in ${W}{^{\alpha,2}}({\mathbb R}^n)$ is dense in $W^{m,2}({\mathbb R}^n)$, $m\leq\alpha-1$, iff the $m$-capacity of $K$ is zero, $C_{m}(K)=0$.Downloads
Published
2014-09-25
Issue
Section
Articles
How to Cite
Koshmanenko, V. D., and M. E. Dudkin. “Nonzero Capacity Sets and Dense Subspaces in Scales of Sobolev Spaces”. Methods of Functional Analysis and Topology, vol. 20, no. 3, Sept. 2014, pp. 213-8, https://zen.imath.kiev.ua/index.php/mfat/article/view/580.