Delta-type solutions for a system of induction equations with discontinuous velocity field
DOI:
Keywords:
Induction equation, Cauchy problem, generalized solutionsAbstract
We study asymptotic solutions of a Cauchy problem for induction equations describing magnetic field in a well conducting fluid. We assume that the coefficient (the velocity field of the fluid) changes rapidly in a small vicinity of a two-dimensional surface. We prove that the weak limit of the solution has delta-type singularity on this surface; in the case of a perfectly conducting fluid, we describe several regularizations of the problem with discontinuous coefficients which allow to define generalized solutions.Downloads
Published
2014-03-25
Issue
Section
Articles
How to Cite
Shafarevich, A. I., and A. I. Esina. “Delta-Type Solutions for a System of Induction Equations With Discontinuous Velocity Field”. Methods of Functional Analysis and Topology, vol. 20, no. 1, Mar. 2014, pp. 17-33, https://zen.imath.kiev.ua/index.php/mfat/article/view/564.