On the extremal extensions of a non-negative Jacobi operator

Authors

  • N. Goloshchapova R. Luxemburg, 74, Donetsk, 83114, Ukraine
  • A. Ananieva R. Luxemburg, 74, Donetsk, 83114, Ukraine 

DOI:

Keywords:

Jacobi matrix, non-negative operator, Friedrichs and Krein extensions, boundary triplet, Weyl function

Abstract

We consider the minimal non-negative Jacobi operator with $p\times p-$matrix entries. Using the technique of boundary triplets and the corresponding Weyl functions, we describe the Friedrichs and Krein extensions of the minimal Jacobi operator. Moreover, we parametrize the set of all non-negative extensions in terms of boundary conditions.

Downloads

Published

2013-12-25

Issue

Section

Articles

How to Cite

Goloshchapova, N., and A. Ananieva. “On the Extremal Extensions of a Non-Negative Jacobi Operator”. Methods of Functional Analysis and Topology, vol. 19, no. 4, Dec. 2013, pp. 310-8, https://zen.imath.kiev.ua/index.php/mfat/article/view/555.