On square root domains for non-self-adjoint Sturm-Liouville operators
DOI:
Keywords:
Square root domains, Kato problem, additive perturbations, Sturm–Liouville operatorsAbstract
We determine square root domains for non-self-adjoint Sturm-Liouville operators of the type $$ L_{p,q,r,s} = - \frac{d}{dx}p\frac{d}{dx}+r\frac{d}{dx}-\frac{d}{dx}s+q $$ in $L^2((c,d);dx)$, where either $(c,d)$ coincides with the real line $\mathbb R$, the half-line $(a,\infty)$, $a \in \mathbb R$, or with the bounded interval $(a,b) \subset \mathbb R$, under very general conditions on the coefficients $q, r, s$. We treat Dirichlet and Neumann boundary conditions at $a$ in the half-line case, and Dirichlet and/or Neumann boundary conditions at $a,b$ in the final interval context. (In the particular case $p=1$ a.e. on $(a,b)$, we treat all separated boundary conditions at $a, b$.)Downloads
Published
2013-09-25
Issue
Section
Articles
How to Cite
Nichols, R., et al. “On Square Root Domains for Non-Self-Adjoint Sturm-Liouville Operators”. Methods of Functional Analysis and Topology, vol. 19, no. 3, Sept. 2013, pp. 227-59, https://zen.imath.kiev.ua/index.php/mfat/article/view/550.