On square root domains for non-self-adjoint Sturm-Liouville operators

Authors

  • R. Nichols Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
  • S. Hofmann Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
  • F. Gesztesy Mathematics Department, The University of Tennessee at Chattanooga, 415 EMCS Building, Dept. 6956, 615 McCallie Ave, Chattanooga, TN 37403, USA 

DOI:

Keywords:

Square root domains, Kato problem, additive perturbations, Sturm–Liouville operators

Abstract

We determine square root domains for non-self-adjoint Sturm-Liouville operators of the type $$ L_{p,q,r,s} = - \frac{d}{dx}p\frac{d}{dx}+r\frac{d}{dx}-\frac{d}{dx}s+q $$ in $L^2((c,d);dx)$, where either $(c,d)$ coincides with the real line $\mathbb R$, the half-line $(a,\infty)$, $a \in \mathbb R$, or with the bounded interval $(a,b) \subset \mathbb R$, under very general conditions on the coefficients $q, r, s$. We treat Dirichlet and Neumann boundary conditions at $a$ in the half-line case, and Dirichlet and/or Neumann boundary conditions at $a,b$ in the final interval context. (In the particular case $p=1$ a.e. on $(a,b)$, we treat all separated boundary conditions at $a, b$.)

Downloads

Published

2013-09-25

Issue

Section

Articles

How to Cite

Nichols, R., et al. “On Square Root Domains for Non-Self-Adjoint Sturm-Liouville Operators”. Methods of Functional Analysis and Topology, vol. 19, no. 3, Sept. 2013, pp. 227-59, https://zen.imath.kiev.ua/index.php/mfat/article/view/550.