Schrödinger operators with nonlocal potentials

Authors

  • L. P. Nizhnik Institut fur Angewandte Mathematik, Universitat Bonn, Endenicherallee 60, D-53 115 Bonn; HCM, SFB 611, Universitat Bonn; BiBoS (Universities of Bielefeld and Bonn)
  • S. Albeverio Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

DOI:

Keywords:

1D Schrödinger operator, point interaction, nonlocal potential

Abstract

We describe selfadjoint nonlocal boundary-value conditions for new exact solvable models of Schrödinger operators with nonlocal potentials. We also solve the direct and the inverse spectral problems on a bounded line segment, as well as the scattering problem on the whole axis for first order operators with a nonlocal potential.

References

S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable models in quantum mechanics, AMS Chelsea Publishing, Providence, RI, 2005. MathSciNet

S. Albeverio, P. Kurasov, Singular perturbations of differential operators, Cambridge University Press, Cambridge, 2000. MathSciNet CrossRef

S. Albeverio, R. O. Hryniv, L. P. Nizhnik, Inverse spectral problems for non-local Sturm-Liouville operators, Inverse Problems 23 (2007), no. 2, 523-535. MathSciNet CrossRef

Sergio Albeverio, Sergei Kuzhel, Leonid P. Nizhnik, On the perturbation theory of self-adjoint operators, Tokyo J. Math. 31 (2008), no. 2, 273-292. MathSciNet CrossRef

Sergio Albeverio, Leonid Nizhnik, Schrodinger operators with nonlocal point interactions, J. Math. Anal. Appl. 332 (2007), no. 2, 884-895. MathSciNet CrossRef

F. A. Berezin, L. D. Faddeev, Remark on the Schrodinger equation with singular potential, Dokl. Akad. Nauk SSSR 137 (1961), 1011-1014. MathSciNet

V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. MathSciNet CrossRef

V. A. Derkach, M. M. Malamud, Characteristic functions of almost solvable extensions of Hermitian operators, Ukrain. Mat. Zh. 44 (1992), no. 4, 435-459. MathSciNet CrossRef

V. I. Gorbachuk, M. L. Gorbachuk, Boundary value problems for operator differential equations, Kluwer Academic Publishers Group, Dordrecht, 1991. MathSciNet CrossRef

M. A. Krasnosel′skii, On self-adjoint extensions of Hermitian operators, Ukrain. Mat. Zurnal 1 (1949), no. 1, 21-38. MathSciNet

A. N. Kocubei, Extensions of a nondensely defined symmetric operator, Sibirsk. Mat. Z. 18 (1977), no. 2, 314-320, 478. MathSciNet

L. P. Nizhnik, Inverse eigenvalue problems for nonlocal Sturm-Liouville operators, Methods Funct. Anal. Topology 15 (2009), no. 1, 41-47. MathSciNet

Leonid Nizhnik, Inverse nonlocal Sturm-Liouville problem, Inverse Problems 26 (2010), no. 12, 125006, 9. MathSciNet CrossRef

Leonid Nizhnik, Inverse spectral nonlocal problem for the first order ordinary differential equation, Tamkang J. Math. 42 (2011), no. 3, 385-394. MathSciNet CrossRef

L. P. Nizhnik, Inverse eigenvalue problems for nonlocal Sturm-Liouville operators on a star graph, Methods Funct. Anal. Topology 18 (2012), no. 1, 68-78. MathSciNet

Fedor S. Rofe-Beketov, Aleksandr M. Kholkin, Spectral analysis of differential operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. MathSciNet CrossRef

Downloads

Published

2013-09-25

Issue

Section

Articles

How to Cite

Nizhnik, L. P., and S. Albeverio. “Schrödinger Operators With Nonlocal Potentials”. Methods of Functional Analysis and Topology, vol. 19, no. 3, Sept. 2013, pp. 199-10, https://zen.imath.kiev.ua/index.php/mfat/article/view/548.