On self-adjontness of 1-D Schrödinger operators with $\delta$-interactions
DOI:
Keywords:
Abstract
In the present work we consider the Schrödinger operator $\mathrm{H_{X,\alpha}}=-\mathrm{\frac{d^2}{dx^2}}+\sum_{n=1}^{\infty}\alpha_n\delta(x-x_n)$ acting in $L^2(\mathbb{R}_+)$. We investigate and complete the conditions of self-adjointness and nontriviality of deficiency indices for $\mathrm{H_{X,\alpha}}$ obtained in [13]. We generalize the conditions found earlier in the special case $d_n:=x_{n}-x_{n-1}=1/n$, $n\in \mathbb{N}$, to a wider class of sequences $\{x_n\}_{n=1}^\infty$. Namely, for $x_n=\frac{1}{n^{\gamma}\ln^\eta n}$ with $\langle\gamma,\eta \rangle\in(1/2,\,1)\!\times\!(-\infty,+\infty)\:\cup\:\{1\}\!\times\!(-\infty,1]$, the description of asymptotic behavior of the sequence $\{\alpha_n\}_{n=1}^{\infty}$ is obtained for $\mathrm{H_{X,\alpha}}$ either to be self-adjoint or to have nontrivial deficiency indices.Downloads
Published
2012-12-25
Issue
Section
Articles
How to Cite
Tyshkevich, D. L., and I. I. Karpenko. “On Self-Adjontness of 1-D Schrödinger Operators With $\delta$-Interactions”. Methods of Functional Analysis and Topology, vol. 18, no. 4, Dec. 2012, pp. 360-72, https://zen.imath.kiev.ua/index.php/mfat/article/view/527.