Positive operators on the Bergman space and Berezin transform
DOI:
Keywords:
Abstract
Let $\mathbb{D}=\{{z\in\mathbb{C}:|z|<1}\}$ and $L^2_a(\mathbb{D})$ be the Bergman space of the disk. In thispaper we characterize the class $\mathcal{A}\subset L^\infty(\mathbb{D})$ such that if $\phi,\psi\in\mathcal{A},\alpha\geq 0$ and $0\leq\phi\leq\alpha\psi$ then there exist positive operators $S,T\in\mathcal{L}(L^2_a(\mathbb{D}))$ such that $\phi(z)=\widetilde{S}(z)\leq\alpha\widetilde{T}(z)=\alpha\psi(z)$ for all $z\in\mathbb{D}$. Further, we have shown that if $S$ and $T$ are two positive operators in $\mathcal{L}(L^2_a(\mathbb{D}))$ and $T$ is invertible then there exists a constant $\alpha\geq0$ such that $\widetilde{S}(z)\leq\alpha\widetilde{T}(z)$ for all $z\in\mathbb{D}$ and $\widetilde{S},\widetilde{T}\in\mathcal{A}$. Here $\mathcal{L}(L^2_a(\mathbb{D}))$ is the space of all boundedlinear operators from $L^2_a(\mathbb{D})$ into $L^2_a(\mathbb{D})$ and $\widetilde{A}(z)=\langle Ak_z,k_z\rangle$ is the Berezintrans form of $A\in\mathcal{L}(L^2_a(\mathbb{D}))$ and $k_z$ is thenormalized reproducing kernel of $L^2_a(\mathbb{D})$. Applications of these results are also obtained.Downloads
Published
2011-09-25
Issue
Section
Articles
How to Cite
Sahoo, M., and N. Das. “Positive Operators on the Bergman Space and Berezin Transform”. Methods of Functional Analysis and Topology, vol. 17, no. 3, Sept. 2011, pp. 204-10, https://zen.imath.kiev.ua/index.php/mfat/article/view/485.