Positive operators on the Bergman space and Berezin transform

Authors

  • M. Sahoo Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar-751004, Orissa, India
  • N. Das School of Applied Sciences (Mathematics), KIIT University, Campus-3 (Kathajori Campus) Bhubaneswar-751024, Orissa, India 

DOI:

Keywords:

Abstract

Let $\mathbb{D}=\{{z\in\mathbb{C}:|z|<1}\}$ and $L^2_a(\mathbb{D})$ be the Bergman space of the disk. In thispaper we characterize the class $\mathcal{A}\subset L^\infty(\mathbb{D})$ such that if $\phi,\psi\in\mathcal{A},\alpha\geq 0$ and $0\leq\phi\leq\alpha\psi$ then there exist positive operators $S,T\in\mathcal{L}(L^2_a(\mathbb{D}))$ such that $\phi(z)=\widetilde{S}(z)\leq\alpha\widetilde{T}(z)=\alpha\psi(z)$ for all $z\in\mathbb{D}$. Further, we have shown that if $S$ and $T$ are two positive operators in $\mathcal{L}(L^2_a(\mathbb{D}))$ and $T$ is invertible then there exists a constant $\alpha\geq0$ such that $\widetilde{S}(z)\leq\alpha\widetilde{T}(z)$ for all $z\in\mathbb{D}$ and $\widetilde{S},\widetilde{T}\in\mathcal{A}$. Here $\mathcal{L}(L^2_a(\mathbb{D}))$ is the space of all boundedlinear operators from $L^2_a(\mathbb{D})$ into $L^2_a(\mathbb{D})$ and $\widetilde{A}(z)=\langle Ak_z,k_z\rangle$ is the Berezintrans form of $A\in\mathcal{L}(L^2_a(\mathbb{D}))$ and $k_z$ is thenormalized reproducing kernel of $L^2_a(\mathbb{D})$. Applications of these results are also obtained.

Downloads

Published

2011-09-25

Issue

Section

Articles

How to Cite

Sahoo, M., and N. Das. “Positive Operators on the Bergman Space and Berezin Transform”. Methods of Functional Analysis and Topology, vol. 17, no. 3, Sept. 2011, pp. 204-10, https://zen.imath.kiev.ua/index.php/mfat/article/view/485.