Spectral gaps of one-dimensional Schrödinger operators with singular periodic potentials

Authors

DOI:

Keywords:

Abstract

The behavior of the lengths of spectral gaps $\{\gamma_{n}(q)\}_{n=1}^{\infty}$ of the Hill-Schrödinger operators $$ S(q)u=-u''+q(x)u,\quad u\in \mathrm{Dom}\left(S(q) \right), $$ with real-valued 1-periodic distributional potentials $q(x)\in H_{1\mbox{-}{\operatorname{per}}}^{-1}(\mathbb{R})$ is studied. We show that they exhibit the same behavior as the Fourier coefficients $\{\widehat{q}(n)\}_{n=-\infty}^{\infty}$ of the potentials $q(x)$ with respect to the weighted sequence spaces $h^{s,\varphi}$, $s>-1$, $\varphi\in \mathrm{SV}$. The case $q(x)\in L_{1\mbox{-}{\operatorname{per}}}^{2}(\mathbb{R})$, $s\in \mathbb{Z}_{+}$, $\varphi\equiv 1$, corresponds to the Marchenko-Ostrovskii Theorem.

Downloads

Published

2009-03-25

Issue

Section

Articles

How to Cite

Molyboga, V. M., and V. A. Mikhailets. “Spectral Gaps of One-Dimensional Schrödinger Operators With Singular Periodic Potentials”. Methods of Functional Analysis and Topology, vol. 15, no. 1, Mar. 2009, pp. 31-40, https://zen.imath.kiev.ua/index.php/mfat/article/view/406.