The involutive automorphisms of $\tau$-compact operators affiliated with a type I von Neuman algebra

Authors

  • K. K. Kudaybergenov Institute of Mathematics and Information Technologies, Uzbekistan Academy of Sciences, 29 F. Khodjaev, Tashkent, 100125, Uzbekistan
  • T. S. Kalandarov Institute of Mathematics and Information Technologies, Uzbekistan Academy of Sciences, 29 F. Khodjaev, Tashkent, 100125, Uzbekistan 

DOI:

Keywords:

Abstract

Let $M$ be a type I von Neumann algebra with a center $Z,$ and a faithful normal semi-finite trace $\tau.$ Consider the algebra $L(M, \tau)$ of all $\tau$-measurable operators with respect to $M$ and let $S_0(M, \tau)$ be the subalgebra of $\tau$-compact operators in $L(M, \tau).$ We prove that any $Z$-linear involutive automorphisms of $S_0(M, \tau)$ is inner.

Downloads

Published

2008-03-25

Issue

Section

Articles

How to Cite

Kudaybergenov, K. K., and T. S. Kalandarov. “The Involutive Automorphisms of $\tau$-Compact Operators Affiliated With a Type I Von Neuman Algebra”. Methods of Functional Analysis and Topology, vol. 14, no. 1, Mar. 2008, pp. 54-59, https://zen.imath.kiev.ua/index.php/mfat/article/view/369.