About one class of Hilbert space uncoditional bases
DOI:
Keywords:
Abstract
Let a sequence $\left\{v_k \right\}^{+\infty}_{-\infty}\in l_2$ and a real sequence $\left\{\lambda_k \right\}^{+\infty}_{-\infty}$ such that $\left\{\lambda_k^{-1} \right\}^{+\infty}_{-\infty}\in l_2$, and an orthonormal basis $\left\{e_k \right\}^{+\infty}_{-\infty}$ of a Hilbert space be given. We describe a sequence $M=\left\{\mu_k \right\}^{+\infty}_{-\infty}$, $M\cap \mathbb{R}=\varnothing$, such that the families $$ f_k = \sum\limits_{j\in\mathbb{Z}} {v_j\left(\lambda_j-\bar{\mu}_k \right)^{-1}}e_k, \quad k\in \mathbb{Z} $$ form an unconditional basis in $\mathfrak{H}$.Downloads
Published
2007-09-25
Issue
Section
Articles
How to Cite
Volkova, M. G., and A. A. Tarasenko. “About One Class of Hilbert Space Uncoditional Bases”. Methods of Functional Analysis and Topology, vol. 13, no. 3, Sept. 2007, pp. 296-00, https://zen.imath.kiev.ua/index.php/mfat/article/view/357.