About one class of Hilbert space uncoditional bases

Authors

  • M. G. Volkova Universidad Autonoma del Estado de Hidalgo Pachuca, Hidalgo, Mexico
  • A. A. Tarasenko South-Ukrainian Pedagogical University, Odessa, Ukraine

DOI:

Keywords:

Abstract

Let a sequence $\left\{v_k \right\}^{+\infty}_{-\infty}\in l_2$ and a real sequence $\left\{\lambda_k \right\}^{+\infty}_{-\infty}$ such that $\left\{\lambda_k^{-1} \right\}^{+\infty}_{-\infty}\in l_2$, and an orthonormal basis $\left\{e_k \right\}^{+\infty}_{-\infty}$ of a Hilbert space be given. We describe a sequence $M=\left\{\mu_k \right\}^{+\infty}_{-\infty}$, $M\cap \mathbb{R}=\varnothing$, such that the families $$ f_k = \sum\limits_{j\in\mathbb{Z}} {v_j\left(\lambda_j-\bar{\mu}_k \right)^{-1}}e_k, \quad k\in \mathbb{Z} $$ form an unconditional basis in $\mathfrak{H}$.

Downloads

Published

2007-09-25

Issue

Section

Articles

How to Cite

Volkova, M. G., and A. A. Tarasenko. “About One Class of Hilbert Space Uncoditional Bases”. Methods of Functional Analysis and Topology, vol. 13, no. 3, Sept. 2007, pp. 296-00, https://zen.imath.kiev.ua/index.php/mfat/article/view/357.