The $\varepsilon_{\infty}$-product of a $b$-space by a quotient bornological space

Authors

  • B. Aqzzouz Universite Ibn Tofail, Faculte des Sciences, Departement de Mathematiques, Laboratoire d'Analyse Fonctionnelle, Harmonique et Complexe, B.P. 133, Kenitra, Morocco

DOI:

Keywords:

Abstract

We define the $\varepsilon_{\infty }$-product of a Banach space $G$\ by a quotient bornological space $E\mid F$ that we denote by $G\varepsilon _{\infty }(E\mid F)$, and we prove that $G$ is an $% \mathcal{L}_{\infty }$-space if and only if the quotient bornological spaces $G\varepsilon _{\infty }(E\mid F)$ and $% (G\varepsilon E)\mid (G\varepsilon F)$ are isomorphic. Also, we show that the functor $\mathbf{.\varepsilon }_{\infty }\mathbf{.}:\mathbf{Ban\times qBan\longrightarrow qBan}$ is left exact. Finally, we define the $\varepsilon _{\infty }$-product of a b-space by a quotient bornological space and we prove that if $G$ is an $% \varepsilon $b-space\ and $E\mid F$ is a quotient bornological space, then $(G\varepsilon E)\mid (G\varepsilon F)$ is isomorphic to $G\varepsilon _{\infty }(E\mid F)$.

Downloads

Published

2007-09-25

Issue

Section

Articles

How to Cite

Aqzzouz, B. “The $\varepsilon_{\infty}$-Product of a $b$-Space by a Quotient Bornological Space”. Methods of Functional Analysis and Topology, vol. 13, no. 3, Sept. 2007, pp. 211-22, https://zen.imath.kiev.ua/index.php/mfat/article/view/350.