The square-transform of Hermite-Biehler functions. A geometric approach

Authors

  • H. Woracek Department of Applied Mathematics and Informatics, South-Ukrainian State Pedagogical University, 26, Staroportofrankovskaya, Odessa, UA-65091, Ukraine
  • V. N. Pivovarchik Departement for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstr. 8-10/101, A-1040 Wien, Austria 

DOI:

Keywords:

Abstract

We investigate the subclass of symmetric indefinite Hermite-Biehler functions which is obtained from positive definite Hermite-Biehler functions by means of the square-transform. It is known that functions of this class can be characterized in terms of location of their zeros. We give another, more elementary and geometric, proof of this result. The present proof employs a `shifting-of-zeros' perturbation method. We apply our results to obtain information on the eigenvalues of a concrete boundary value problems.

Downloads

Published

2007-06-25

Issue

Section

Articles

How to Cite

Woracek, H., and V. N. Pivovarchik. “The Square-Transform of Hermite-Biehler Functions. A Geometric Approach”. Methods of Functional Analysis and Topology, vol. 13, no. 2, June 2007, pp. 187-00, https://zen.imath.kiev.ua/index.php/mfat/article/view/348.