On $\mu$-scale invariant operators

Authors

  • E. Tsekanovskii Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
  • K. A. Makarov Department of Mathematics, Niagara University, NY 14109, USA 

DOI:

Keywords:

Abstract

We introduce the concept of a $\mu$-scale invariant operator with respect to a unitary transformation in a separable complex Hilbert space. We show that if a nonnegative densely defined symmetric operator is $\mu$-scale invariant for some $\mu>0$, then both the Friedrichs and the Krein-von Neumann extensions of this operator are also $\mu$-scale invariant.

Downloads

Published

2007-06-25

Issue

Section

Articles

How to Cite

Tsekanovskii, E., and K. A. Makarov. “On $\mu$-Scale Invariant Operators”. Methods of Functional Analysis and Topology, vol. 13, no. 2, June 2007, pp. 181-6, https://zen.imath.kiev.ua/index.php/mfat/article/view/347.