Properties of the spectrum of type $\pi_{+}$ and type $\pi_{-}$ of self-adjoint operators in Krein spaces

Authors

  • C. Trunk Technische Universitat Berlin, Institut fur Mathematik MA 6--4, Strasse des 17. Juni 136, D-10623 Berlin
  • F. Philipp Technische Universitat Berlin, Institut fur Mathematik MA 6--4, Strasse des 17. Juni 136, D-10623 Berlin
  • J. Behrndt Technische Universitat Berlin, Institut fur Mathematik MA 6--4, Strasse des 17. Juni 136, D-10623 Berlin

DOI:

Keywords:

Abstract

We investigate spectral points of type $\pi_{+}$ and type $\pi_{-}$ for self-adjoint operators in Krein spaces. In particular a sharp lower bound for the codimension of the linear manifold $H_0$ occuring in the definition of spectral points of type $\pi_+$ and type $\pi_-$ is determined. Furthermore, we describe the structure of the spectrum in a small neighbourhood of such points and we construct a finite dimensional perturbation which turns a real spectral point of type $\pi_{+}$ (type $\pi_{-}$) into a point of positive (resp.\ negative) type. As an application we study a singular Sturm-Liouville operator with an indefinite weight.

Downloads

Published

2006-12-25

Issue

Section

Articles

How to Cite

Trunk, C., et al. “Properties of the Spectrum of Type $\pi_{+}$ and Type $\pi_{-}$ of Self-Adjoint Operators in Krein Spaces”. Methods of Functional Analysis and Topology, vol. 12, no. 4, Dec. 2006, pp. 326-40, https://zen.imath.kiev.ua/index.php/mfat/article/view/326.