The numerical radius points of ${\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$

Authors

  • S. G. Kim Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea
  • C. Y. Lee Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea

DOI:

https://doi.org/https://doi.org/10.31392/MFAT-npu26_3–4.2023.03

Keywords:

Numerical radius, norm, numerical radius attaining bilinear mappings, numerical radius points

Abstract

For $n\geq 2$ and a Banach space $E$ we let $$ \Pi(E)=\{[x^*, x_1, \ldots, x_n]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}~\}, $$ ${\mathcal L}(^n E:E)$ denote the space of all continuous $n$-linear mappings from $E$ to itself. An element $[x^*, x_1, \ldots, x_n]\in \Pi(E)$ is called a numerical radius point of $T\in {\mathcal L}(^n E:E)$ if $$ |x^{*}(T(x_1, \ldots, x_n))|=v(T), $$ where $v(T)$ is the numerical radius of $T$. By $\rm{Nradius}({T})$ we denote the set of all numerical radius points of $T$. Let $0\leq \theta\leq\frac{\pi}{2}$ and $\ell^2_{{({\infty}, \theta)}}=\mathbb{R}^2$ with the rotated supremum norm $$ \|(x, y)\|_{{({\infty}, \theta)}}=\max\Big\{|x \cos \theta+y \sin \theta|,~ |x \sin \theta-y \cos \theta|\Big\}. $$ In this paper, we show that the numerical radius of $T\in{\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$ equals to its norm $\|T\|.$ Using this, we classify $\rm{Nradius}({T})$ for every $T\in {\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$ in connection with the norming points of the bilinear mapping associated with $T$. Let $$ \mbox{NA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{is norm attaining} \} $$ and $$ \mbox{NRA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{is numerical radius attaining} \}. $$ We also show that $ \mbox{NA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}}))=\mbox{NRA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})),$ which generalizes some results in [12].

Для $n\geq 2$ і банахова простору $E$ покладемо $$ \Pi(E)=\{[x^*, x_1, \ldots, x_n]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{для}~{j=1, \ldots, n}~\}, $$ де ${\mathcal L}(^n E:E)$ позначає простір усіх неперервних $n$-лінійних відображень $E$ на себе. Елемент $[x^*, x_1, \ldots, x_n]\in \Pi(E)$ називається точкою чисельного радіусу $T\in {\mathcal L}(^n E:E)$, якщо $$ |x^{*}(T(x_1, \ldots, x_n))|=v(T), $$ де $v(T)$ — чисельний радіус $T$. За $\rm{Nradius}({T})$ позначимо множину всіх точок чисельного радіусу $T$. Нехай $0\leq \theta\leq\frac{\pi}{2}$ і $\ell^2_{{({\infty}, \theta)}}=\mathbb{R}^2$ із поверненою супремум нормою $$ \|(x, y)\|_{{({\infty}, \theta)}}=\max\Big\{|x \cos \theta+y \sin \theta|,~ |x \sin \theta-y \cos \theta|\Big\}. $$ Показано, що чисельний радіус $T\in{\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$ дорівнює своїй нормі $\|T\|.$ Використовуючи це, ми класифікуємо $\rm{Nradius}({T})$ для кожного $T\in {\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$, пов'язуючи з нормуючими точками білінійного відображення, відповідного $T$. Нехай $$ \mbox{NA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{досягає норми} \} $$ і $$ \mbox{NRA}({\mathcal L}(^n E:E))=\{T\in {\mathcal L}(^n E:E): T~\mbox{досягає чисельного радіусу} \} . $$ Ми також показуємо що $ \mbox{NA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}}))=\mbox{NRA}({\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})),$ що узагальнює деякі результати роботи [12].

Downloads

Published

2023-09-25

Issue

Section

Articles

How to Cite

Kim, S. G., and C. Y. Lee. “The Numerical Radius Points of ${\mathcal L}(^2~ \ell^2_{{({\infty}, \theta)}}: \ell^2_{{({\infty}, \theta)}})$”. Methods of Functional Analysis and Topology, vol. 29, no. 3-4, Sept. 2023, pp. 101-10, https://doi.org/https://doi.org/10.31392/MFAT-npu26_3–4.2023.03.