A note on pencil of bounded linear operators on non-archimedean Banach spaces

Authors

  • A. Blali Department of Mathematics, University of Sidi Mohamed Ben Abdellah, ENS, Fez, Morocco
  • Abdelkhalek El Amrani Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco
  • J. Ettayb Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

DOI:

https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2022.02

Keywords:

Non-archimedean Banach spaces, spectrum, essential spectrum

Abstract

We give a characterization of the essential spectrum for $(A,B)$, where $A$ is a closed linear operator and $B$ is a bounded linear operator, by means of Fredholm operators on a Banach space of countable type over $\mathbb{Q}_{p}.$

За допомогою фредгольмових операторів на банаховому просторі зліченого типу над $\mathbb{Q}_{p}$ надано характеристику істотного спектра для $(A,B)$, де $A$ - замкнеґ-ний лінійний оператор, а $B$ - обмежений.

Downloads

Published

2022-06-25

Issue

Section

Articles

How to Cite

Blali, A., et al. “A Note on Pencil of Bounded Linear Operators on Non-Archimedean Banach Spaces”. Methods of Functional Analysis and Topology, vol. 28, no. 2, June 2022, pp. 105-9, https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2022.02.