Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators

Authors

  • El. Berkak Laboratory: Topology, Algebra, Geometry and Discrete Mathematics. Department of Mathematics and Informatics, Faculty of Sciences A¨ın Chock, University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco
  • El. M. Loualid Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, University Of Chouaib Doukkali, El Jadida, Morocco
  • R. Daher Laboratory: Topology, Algebra, Geometry and Discrete Mathematics. Department of Mathematics and Informatics, Faculty of Sciences A¨ın Chock, University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco

DOI:

https://doi.org/https://doi.org/10.31392/MFAT-npu26_4.2021.06

Keywords:

Uncertainty principle, Donoho-Stark Theorem, The Quadratic-Phase Fourier transform

Abstract

In this paper, we obtain a generalization of the Donoho-Stark uncertainty principle associated with the Quadratic-Phase Fourier integral operators which is defined as a generalization of several integral transforms whose kernel has an exponential form.

У цій роботі ми отримуємо узагальнення принципу невизначеності Доного-Старка, пов'язане з квадратично-фазовим інтегральним оператором Фур'є, який визначається як узагальнення кількох інтегральних перетворень з ядрами\break експоненціальної форми.

Downloads

Published

2021-12-25

Issue

Section

Articles

How to Cite

Berkak, El., et al. “Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators”. Methods of Functional Analysis and Topology, vol. 27, no. 4, Dec. 2021, pp. 335-9, https://doi.org/https://doi.org/10.31392/MFAT-npu26_4.2021.06.