On some numerical radius inequalities for Hilbert space operators

Authors

  • M. Ghasvareh Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • M. E. Omidvar Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

DOI:

https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2021.07

Keywords:

Numerical radius, norm inequality, convex function

Abstract

This article is devoted to studying some new numerical radius inequalities for Hilbert space operators. Our analysis enables us to improve an earlier bound for numerical radius due to Kittaneh. It is shown, among other, that if $A\in \mathcal{B}(\mathcal{H})$, then \[ \frac{1}{8}\left( {{\left\| A+{{A}^{*}} \right\|}^{2}}+{{\left\| A-{{A}^{*}} \right\|}^{2}} \right)\le \omega ^{2}\left( A \right) \le \left\| \frac{{{\left| A \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}}}{2} \right\|-m\left( {{\left( \frac{\left| A \right|-\left| {{A}^{*}} \right|}{2} \right)}^{2}} \right ). \]

Отримані нові нерівності для числового радіуса операторів у гільбертовім просторі. Зокрема, покращено попередній результат Кіттане. Показано, що для $A\in B(H)$, \[ \frac{1}{8}\left( {{\left\| A+{{A}^{*}} \right\|}^{2}}+{{\left\| A-{{A}^{*}} \right\|}^{2}} \right)\le \omega ^{2}\left( A \right) \le \left\| \frac{{{\left| A \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}}}{2} \right\|-m\left( {{\left( \frac{\left| A \right|-\left| {{A}^{*}} \right|}{2} \right)}^{2}} \right ). \]

Downloads

Published

2021-06-25

Issue

Section

Articles

How to Cite

Ghasvareh, M., and M. E. Omidvar. “On Some Numerical Radius Inequalities for Hilbert Space Operators”. Methods of Functional Analysis and Topology, vol. 27, no. 2, June 2021, pp. 192-7, https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2021.07.