On some numerical radius inequalities for Hilbert space operators
DOI:
https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2021.07Keywords:
Numerical radius, norm inequality, convex functionAbstract
This article is devoted to studying some new numerical radius inequalities for Hilbert space operators. Our analysis enables us to improve an earlier bound for numerical radius due to Kittaneh. It is shown, among other, that if $A\in \mathcal{B}(\mathcal{H})$, then \[ \frac{1}{8}\left( {{\left\| A+{{A}^{*}} \right\|}^{2}}+{{\left\| A-{{A}^{*}} \right\|}^{2}} \right)\le \omega ^{2}\left( A \right) \le \left\| \frac{{{\left| A \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}}}{2} \right\|-m\left( {{\left( \frac{\left| A \right|-\left| {{A}^{*}} \right|}{2} \right)}^{2}} \right ). \]Отримані нові нерівності для числового радіуса операторів у гільбертовім просторі. Зокрема, покращено попередній результат Кіттане. Показано, що для $A\in B(H)$, \[ \frac{1}{8}\left( {{\left\| A+{{A}^{*}} \right\|}^{2}}+{{\left\| A-{{A}^{*}} \right\|}^{2}} \right)\le \omega ^{2}\left( A \right) \le \left\| \frac{{{\left| A \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}}}{2} \right\|-m\left( {{\left( \frac{\left| A \right|-\left| {{A}^{*}} \right|}{2} \right)}^{2}} \right ). \]
Downloads
Published
2021-06-25
Issue
Section
Articles
How to Cite
Ghasvareh, M., and M. E. Omidvar. “On Some Numerical Radius Inequalities for Hilbert Space Operators”. Methods of Functional Analysis and Topology, vol. 27, no. 2, June 2021, pp. 192-7, https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2021.07.