A Remark on the Range Closures of an Elementary Operator
DOI:
https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2021.04Keywords:
Elementary operator, Fuglede-Putnam property, trace class operator, quasi-adjoint operatorAbstract
Let $L(H)$ denote the algebra of operators on a complex infinite dimensional Hilbert space $H$ into itself. For $A,B\in L(H)$, the elementary operator $\tau_{A,B}\in L(L(H))$ is defined by $\tau_{A,B}(X)=AXB-X$. An operator $A\in L(H)$ is said to be generalized quasi-adjoint if $ATA=T$ implies $A^{\ast}TA^{\ast}=T$ for every $T\in C_{1}(H)$ (trace class operators). In this paper, we give an extension of generalized quasi-adjoint operators. We consider the class of pairs of operators $A, B\in L(H)$ such that $\overline{R(\tau_{A,B})}^{W^{\ast}}=\overline{R(\tau_{A^{\ast},B^{\ast}})}^{W^{\ast}}$, where $\overline{R(\tau_{A,B})}^{W^{\ast}}$ denotes the ultra-weak closure of the range $R(\tau_{A,B})$ of $\tau_{A,B}$. Such pairs of operators are called generalized quasi-adjoint. We establish some basic properties of those pairs of operators.Нехай $L(H)$ -- алгебра операторів у комплексному нескінченновимірному гільбертовому просторі $H$. Для $A,B\in L(H)$, елементарний оператор $\tau_{A,B}\in L(L(H))$ визначається як $\tau_{A,B}(X)=AXB-X$. Кажуть, що оператор $A\in L(H)$ є узагальненим квазіспряженим, якщо з $ATA=T$ випливає, що $A^{\ast}TA^{\ast}=T$ для кожного $T\in C_{1}(H)$ (клас ядерних операторів). У статті дається розширення класу узагальнених квазіспряжених операторів. Розглядається клас пар опера\-торів $A, B\in L(H)$, таких, що $\overline{R(\tau_{A,B})}^{W^{\ast}}=\overline{R(\tau_{A^{\ast},B^{\ast}})}^{W^{\ast}}$, де через $\overline{R(\tau_{A,B})}^{W^{\ast}}$ позначене ультраслабке замикання області значень $R(\tau_{A,B})$ of $\tau_{A,B}$. Такі пари операторів звуться узагальненими квазіспряженими. Встановлені основні власти\-вості таких пар операторів.
Downloads
Published
2021-06-25
Issue
Section
Articles
How to Cite
Bouhafsi, Y., et al. “A Remark on the Range Closures of an Elementary Operator”. Methods of Functional Analysis and Topology, vol. 27, no. 2, June 2021, pp. 151-6, https://doi.org/https://doi.org/10.31392/MFAT-npu26_2.2021.04.