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SECOND DEGREE SEMICLASSICAL LINEAR FUNCTIONALS OF
CLASS ONE. THE QUASI-ANTISYMMETRIC CASE

MOHAMED ZAATRA

Abstract. An orthogonal sequence with respect to a regular linear functional w is
said to be semiclassical if there exist a monic polynomial \Phi and a polynomial \Psi with
\mathrm{d}\mathrm{e}\mathrm{g}(\Psi ) \geq 1, such that (\Phi w)

\prime 
+\Psi w = 0. Recently, all semiclassical monic orthogonal

polynomial sequences of class one satisfying a three term recurrence relation with
\beta 0 =  - \alpha 0, \beta n+1 = \alpha n  - \alpha n+1 and \gamma n+1 =  - \alpha 2

n with \alpha n \not = 0 , n \geq 0, have been
determined [17].

In this paper, we point sequences of the above family such that their corre-

sponding Stieltjes function S(w)(z) =  - 
\sum 
n\geq 0

(w)n

zn+1
satisfies a quadratic equation

B(z)S2(w)(z) + C(z)S(w)(z) +D(z) = 0, where B, C, D are polynomials.

Ортогональна послiдовнiсть вiдносно регулярного лiнiйного функцiонала w

називається напiвкласичною, якщо iснує моном \Phi i полiном \Psi , \mathrm{d}\mathrm{e}\mathrm{g}(\Psi ) \geq 1, такi,
що (\Phi w)

\prime 
+ \Psi w = 0. Останнiм часом всi напiвкласичнi монiчнi ортогональнi

полiномiальнi послiдовностi першого класу, що задовольняють тричленному
рекурентному вiдношенню, коли \beta 0 =  - \alpha 0, \beta n+1 = \alpha n  - \alpha n+1 i \gamma n+1 =  - \alpha 2

n з
\alpha n \not = 0, n \geq 0, були визначенi [17].

В статтi вказуються послiдовностi вищевказаної сiм’ї такi, що їх вiдповiдна

функцiя Стiлтьєса S(w)(z) =  - 
\sum 
n\geq 0

(w)n

zn+1
задовольняє квадратичному рiвнянню

B(z)S2(w)(z) + C(z)S(w)(z) +D(z) = 0, де B, C, D – полiноми.

1. Introduction and preliminary results

A 1995 paper of Maroni [10] provides an introduction to second degree linear functionals.
These linear functionals are characterized by the fact that their formal Stieltjes function
S(w) satisfies a quadratic equation B(z)S2(w)(z) + C(z)S(w)(z) +D(z) = 0. They have
been studied in [7, 20] and [16] in the framework of orthogonality on several intervals.
Later in [11] and [10], an algebraic approach to such second degree linear functionals
as an extension of the Tchebychev linear functionals was given. The second degree
linear functional set is a part of the semiclassical one [9, 10]. Among the second degree
semiclassical sequences of orthogonal polynomials only those which are of class s = 0 and
those of class s = 1, which are symmetric and quasi-symmetric, are completely described
in the literature [1, 2, 3, 19]. See also [4, 5, 8, 18].

In this contribution we are dealing with second degree linear functionals which are
semiclassical of class s = 1 and such that their corresponding sequence of monic orthogonal
polynomials \{ Wn\} n\geq 0 verifies the recurrence relation

Wn+2(x) =
\Bigl( 
x - (\alpha n  - \alpha n+1)

\Bigr) 
Wn+1(x) + \alpha 2

nWn(x), n \geq 0 ,

W1(x) = x+ \alpha 0, W0(x) = 1,
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with \alpha n \not = 0 , n \geq 0. This family has been a subject of some works. For instance, Maroni
[12, 15] characterized such sequences by a particular quadratic decomposition and by a
perturbation of a symmetric linear functional.

The structure of the manuscript is as follows. The first section is devoted to preliminary
results and notations used in the sequel. In the second section, we focus our attention on
second degree linear functionals. More precisely, all second degree semiclassical linear
functionals of class s = 1 such that their corresponding MOPS verify the above mentioned
recurrence relation, are determined. Finally, the polynomial coefficients of the second
degree equation fulfilled by the corresponding formal Stieltjes function are deduced.

In the sequel, we will recall some basic definitions and results. The field of complex
numbers is denoted by \BbbC . The vector space of polynomials with coefficients in \BbbC is
denoted by \scrP and its dual space is denoted by \scrP \prime . We denoted by \langle w, f\rangle the value of
w \in \scrP \prime on f \in \scrP . In particular, we denote by (w)n = \langle w, xn\rangle , n \geq 0, the moments of w.
For any linear functional (form) w, any polynomial h, let Dw = w

\prime 
, hw and \delta 0 be the

linear functionals defined by

\langle w\prime , f\rangle :=  - \langle w, f \prime \rangle , \langle hw, f\rangle := \langle w, hf\rangle , \langle \delta 0, f\rangle = f(0), f \in \scrP .

We recall the definition of right-multiplication of a linear functional w by a polynomial

h(x) =

n\sum 
\nu =0

a\nu x
\nu :

(wh)(x) :=
\Bigl\langle 
w,

xh(x) - \xi h(\xi )

x - \xi 

\Bigr\rangle 
=

n\sum 
m=0

\Bigl( n\sum 
\nu =m

a\nu (w)\nu  - m

\Bigr) 
xm. (1.1)

By duality, we obtain the Cauchy’s product of two linear functionals:

\langle wv, f\rangle := \langle w, vf\rangle , w, v \in \scrP \prime , f \in \scrP .

We define [14] the form (x - c) - 1w , c \in \BbbC , through\bigl\langle 
(x - c) - 1w, f

\bigr\rangle 
:= \langle w, \theta cf\rangle ,

with \bigl( 
\theta cf

\bigr) 
(x) =

f(x) - f(c)

x - c
, c \in \BbbC , f \in \scrP . (1.2)

From the definition, one gets

(w\theta 0f)(x) = \langle w, f(x) - f(\xi )

x - \xi 
\rangle , w \in \scrP 

\prime 
, f \in \scrP . (1.3)

We introduce an operator \sigma : \scrP \rightarrow \scrP defined by (\sigma f)(x) = f(x2) for all f \in \scrP . By
transposition, we define \sigma w as

\langle \sigma w, f\rangle = \langle w, \sigma f\rangle , w \in \scrP 
\prime 
, f \in \scrP . (1.4)

We will also use the so-called formal Stieltjes function associated with w \in \scrP \prime 
and

defined by

S(w)(z) =  - 
\sum 
n\geq 0

(w)n
zn+1

. (1.5)

The following results are fundamental [13, 14].
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Lemma 1.1. For any f \in \scrP and w \in \scrP \prime 
,

x - 1(xw) = w  - (w)0\delta 0, (1.6)

(fw)
\prime 
= fw

\prime 
+ f

\prime 
w, (1.7)

f(x)(\sigma w) = \sigma 
\bigl( 
f(x2)w

\bigr) 
, (1.8)

\sigma w
\prime 
= 2

\bigl( 
\sigma (xw)

\bigr) \prime 

, (1.9)\bigl( 
(x - 1w)f

\bigr) 
(z) =

\bigl( 
\theta 0(wf)

\bigr) 
(z) =

\bigl( 
w(\theta 0f)

\bigr) 
(z), (1.10)\bigl( 

w(\sigma f)
\bigr) 
(z) =

\bigl( 
(\sigma w)f

\bigr) 
(z2) + z

\bigl( 
\sigma (\xi w)(\theta 0f)

\bigr) 
(z2), (1.11)\bigl( 

\theta 0(\sigma f)
\bigr) 
(z) = z

\bigl( 
\sigma (\theta 0f)

\bigr) 
(z). (1.12)

Let us recall that a linear functional w is said to be regular (quasi-definite) if there
exists a sequence \{ Wn\} n\geq 0 of polynomials with \mathrm{d}\mathrm{e}\mathrm{g}Wn = n, n \geq 0, such that

\langle w,WnWm\rangle = rn\delta n,m, rn \not = 0, n \geq 0.

We can always assume that each Wn is monic, i.e. Wn(x) = xn+ (lower degree terms).
Then the sequence \{ Wn\} n\geq 0 is said to be orthogonal with respect to w (monic orthogonal
polynomial sequence (MOPS) in short).

It is a very well-known fact that the sequence \{ Wn\} n\geq 0 satisfies a three-term recurrence
relation (see, for instance, the monograph by Chihara [6]),

Wn+2(x) = (x - \beta n+1)Wn+1(x) - \gamma n+1Wn(x), n \geq 0,

W1(x) = x - \beta 0, W0(x) = 1,
(1.13)

with
\bigl( 
\beta n, \gamma n+1

\bigr) 
\in \BbbC \times (\BbbC  - \{ 0\} ), n \geq 0. By convention we set \gamma 0 = (w)0.

A linear functional w is said to be normalized if (w)0 = 1. In this paper, we suppose
that any linear functional is normalized.

We recall that a linear functional w is called symmetric if (w)2n+1 = 0, n \geq 0. The
conditions (w)2n+1 = 0, n \geq 0, are equivalent to the fact that the corresponding MOPS
\{ Wn\} n\geq 0 satisfies the three-term recurrence relation (1.13) with \beta n = 0, n \geq 0 [6].

Now, let us recall some features of the second degree semiclassical character [10].

Definition 1.2. A linear functional w is said to be a second degree linear functional if it
is regular and there exist two polynomials B and C such that

B(z)S2(w)(z) + C(z)S(w)(z) +D(z) = 0, (1.14)

where D depends on B, C and w, and

D(z) = (w\theta 0C)(z) - (w2\theta 20B)(z). (1.15)

The regularity of w means that we must have B \not = 0, C2  - 4BD \not = 0 and D \not = 0.
The following expressions are equivalent to (1.14) [10]:

B(x)w2 = xC(x)w, \langle w2, \theta 0B\rangle = \langle w,C\rangle . (1.16)

In the sequel, we shall assume B to be monic.
Let us recall that a linear functional w is called semiclassical if it is regular and there

exist two polynomials \Phi and \Psi , where \Phi (x) is monic and \mathrm{d}\mathrm{e}\mathrm{g}(\Psi ) \geq 1, such that

(\Phi w)
\prime 
+\Psi w = 0. (1.17)

The class of a semiclassical linear functional w is s = \mathrm{m}\mathrm{a}\mathrm{x}
\bigl( 
\mathrm{d}\mathrm{e}\mathrm{g}(\Phi )  - 2,\mathrm{d}\mathrm{e}\mathrm{g}(\Psi )  - 1

\bigr) 
if

and only if the following condition is satisfied:\prod 
c\in \scrZ \Phi 

\Bigl( 
| \Phi \prime (c) + \Psi (c)| + | \langle w, \theta 2c\Phi + \theta c\Psi \rangle | 

\Bigr) 
\not = 0,
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where \scrZ \Phi is the set of zeros of \Phi [15].
If s = 0, w is called a classical linear functional.
As a result, if w is a semiclassical linear functional of class s satisfying (1.17), then the

shifted linear functional \widehat w =
\bigl( 
ha - 1 \circ \tau  - b

\bigr) 
w, a \in \BbbC \ast , b \in \BbbC , is also semiclassical having

the same class as that of w and satisfying the equation\bigl( \widehat \Phi \widehat w\bigr) \prime + \widehat \Psi \widehat w = 0, (1.18)

with \widehat \Phi (x) = a - t\Phi (ax+ b), \widehat \Psi (x) = a1 - t\Psi (ax+ b), t = \mathrm{d}\mathrm{e}\mathrm{g}(\Phi ),

where, for each polynomial f ,

\langle \tau bw, f\rangle := \langle w, f(x+ b)\rangle , \langle haw, f\rangle := \langle w, f(ax)\rangle .
A second degree linear functional w is a semiclassical linear functional and satisfies (1.17),
with [10]

k\Phi (x) = B(x)
\bigl( 
C2(x) - 4B(x)D(x)

\bigr) 
,

k\Psi (x) =  - 3

2
B(x)

\bigl( 
C2(x) - 4B(x)D(x)

\bigr) \prime 

, k \not = 0,

where k is the normalization factor.
A second degree character is kept by shifting. Indeed, if w is a second degree linear

functional satisfying (1.16), then \widehat w is also a second degree linear functional [10]. It
satisfies \widehat B(x) \widehat w2 = x \widehat C(x) \widehat w, \langle \widehat w2, \theta 0 \widehat B\rangle = \langle \widehat w, \widehat C\rangle ,
with \widehat B(x) = a - rB(ax+ b), \widehat C(x) = a1 - rC(ax+ b), r = \mathrm{d}\mathrm{e}\mathrm{g}(B).

We finish this section by recalling an important result.

Theorem 1.3. [3] Among the classical linear functionals, only the Jacobi linear func-
tionals \scrJ (p - 1

2 , q  - 
1
2 ) are second degree linear functionals, provided p+ q \geq 0, p, q \in \BbbZ .

2. Second degree quasi-antisymmetric semiclassical linear functionals of
class one

From now on, let w be a semiclassical linear functional of class s = 1 satisfying (21)
and its corresponding MOPS \{ Sn\} n\geq 0 fulfills

Wn+2(x) =
\Bigl( 
x - (\alpha n  - \alpha n+1)

\Bigr) 
Wn+1(x) + \alpha 2

nWn(x), n \geq 0,

W1(x) = x+ \alpha 0, W0(x) = 1,
(2.19)

with \alpha n \not = 0, n \geq 0.
Then, its associated linear functional w is said to be quasi-antisymmetric (i.e (w)2n+2 =

0, n \geq 0). Equivalently, x\sigma w = 0. For more information about these linear functionals
see [12, 15].

Let us begin with an example \vargamma of second degree quasi-antisymmetric semiclassical
linear functional of class one. This example is given in [10]. The linear functional \vargamma 
satisfies (1.14) with

B(z) = z, C(z) = 2(iz + 1), D(z) = 2i, (2.20)

and (1.17) with
\Phi (x) = x3  - x, \Psi (x) =  - 3x2.

Theorem 2.1. The quasi-antisymmetric linear functional w is a second degree linear
functional if and only if the form (w)1v = \sigma (xw) is a second degree linear functional.

For the proof, we need the following lemmas.
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Lemma 2.2. If w is a quasi-antisymmetric linear functional, then we have

x\sigma w2 =
\bigl( 
\sigma (xw)

\bigr) 2
, (2.21)

\sigma (xw2) = 2\sigma (xw). (2.22)

Proof. By using equations (1.1) and (1.4), we obtain

\langle x\sigma w2, xn\rangle = \langle w2, x2n+2\rangle 

= \langle w,
2n+2\sum 
k=0

xk(w)2n+2 - k\rangle 

= \langle w,
n\sum 

k=0

x2k+1(w)2n+1 - 2k\rangle 

= \langle \sigma (xw),
n\sum 

k=0

xk
\bigl( 
\sigma (xw)

\bigr) 
n - k

\rangle 

= \langle 
\bigl( 
\sigma (xw)

\bigr) 2
, xn\rangle .

Hence (2.21) follows.
Now, taking into account the relations (1.1) and (1.4), we get

\langle \sigma (xw2), xn\rangle = \langle w2, x2n+1\rangle 

= \langle w,
2n+1\sum 
k=0

xk(w)2n+1 - k\rangle 

= \langle w, x2n+1 + (w)2n+1 +

n\sum 
k=1

x2k(w)2n+1 - 2k\rangle 

= 2\langle \sigma (xw), xn\rangle + \langle \sigma w,
n\sum 

k=1

xk(w)2n+1 - 2k\rangle 

= 2\langle \sigma (xw), xn\rangle + \langle x\sigma w,
n\sum 

k=1

xk - 1(w)2n+1 - 2k\rangle .

Here we have the result (2.22). \square 

Lemma 2.3. If w is a quasi-antisymmetric linear functional and f \in \scrP , then we have\bigl( 
(\sigma w)f

\bigr) 
(z) = f(z), (2.23)\bigl( 

w\theta 0(\sigma f)
\bigr) 
(z) =

\bigl( 
(\sigma \xi w)(\theta 0f)

\bigr) 
(z2) + z(\theta 0f)(z

2), (2.24)\bigl( 
w2\theta 0(\sigma f)

\bigr) 
(z) = z

\bigl( 
(\sigma \xi w)2(\theta 20f)

\bigr) 
(z2) + 2

\bigl( 
(\sigma \xi w)(\theta 0f)

\bigr) 
(z2) + z(\theta 0f)(z

2), (2.25)\bigl( 
w2\theta 20(\sigma f)

\bigr) 
(z) =

\bigl( 
(\sigma \xi w)2(\theta 20f)

\bigr) 
(z2) + 2

\bigl( 
(\sigma \xi w)(\theta 20f)

\bigr) 
(z2) + (\theta 0f)(z

2). (2.26)

Proof. The proof of (2.23) is evident from (1.1). Then, (2.24) is a consequence of them
and (1.10)—(1.11). The property (2.25) is obtained from (1.6), (1.10)—(1.12) and (2.21)—
(2.22). Finally, (2.26) is evident from (1.10) and (2.25). \square 

Proof of Theorem 2.1. Let us write the polynomials B, C and D according to their even
and odd parts, \left\{     

B(x) = Be(x2) + xBo(x2),

C(x) = Ce(x2) + xCo(x2),

D(x) = De(x2) + xDo(x2).

(2.27)
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Now, from (1.5) and the fact that w is a quasi-antisymmetric linear functional, we have

(w)1zS(v)(z
2) = zS(w)(z) + 1. (2.28)

Then, from (2.28), (1.14) reduces to

B(z)
\Bigl( 
(w)1zS(v)(z

2) - 1
\Bigr) 2

+ zC(z)
\Bigl( 
(w)1zS(v)(z

2) - 1
\Bigr) 
+ z2D(z) = 0.

Equivalently,

(w)21z
2B(z)S2(v)(z2) + (w)1

\bigl( 
z2C(z) - 2zB(z)

\bigr) 
S(v)(z2) + z2D(z) +B(z) - zC(z) = 0.

Taking into account (2.27) and the even component in left hand side, we get

B1(z)S
2(v)(z) + C1(z)S(v)(z) +D1(z) = 0,

with \left\{     
B1(z) = (w)21zB

e(z),

C1(z) = (w)1z
\bigl( 
Ce(z) - 2Bo(z)

\bigr) 
,

D1(z) = z
\bigl( 
De(z) - Co(z)

\bigr) 
+Be(z).

(2.29)

Now, taking into account (1.11) and (2.23)–(2.27), we get from (1.15), after some calcula-
tions, that

De(z) = (w)1

\Bigl( \bigl( 
v\theta 0C

e)
\bigr) 
(z) - 2

\bigl( 
v\theta 0B

o
\bigr) 
(z)

\Bigr) 
 - (w)21

\bigl( 
v2\theta 20B

e
\bigr) 
(z) + Co(z) - 

\bigl( 
\theta 0B

e
\bigr) 
(z).

(2.30)
Or, for each polynomial f , we have

(wf)(z) = z
\bigl( 
w\theta 0f

\bigr) 
(z) + \langle w, f\rangle . (2.31)

Then, from (2.30) and (2.31), we get from (2.29) that

D1(z) = (v\theta 0C1(z) - (v2\theta 20B1)(z) + (w)1\langle v, 2Bo  - Ce\rangle + (w)21\langle v2, \theta 0Be\rangle +Be(0).

But, from (1.16) and (2.27), we can deduce

\langle \sigma w2, Be\rangle + \langle (\sigma \xi w2), Bo\rangle = \langle (\sigma \xi w), Ce\rangle .

Thus, from (1.6) and (2.21)–(2.22), we get

(w)21\langle v2, \theta 0Be\rangle + 2(w)1\langle v,Bo\rangle +Be(0) = (w)1\langle v, Ce\rangle .

Therefore, D1(z) = (v\theta 0C1(z) - (v2\theta 20B1)(z) and also v is a second degree linear functional.
Conversely, we assume that v is a second degree linear functional. Then there exist

two polynomials B1 and C1 such that

B1(z)S
2(v)(z) + C1(z)S(v)(z) +D1(z) = 0, (2.32)

with
D1(z) =

\bigl( 
v\theta 0C1

\bigr) 
(z) - 

\bigl( 
v2\theta 20B1

\bigr) 
(z).

Making the change of variable z \rightarrow z2 in (2.32) and substituting (2.28) into the obtained
equation, we get (1.14) with\left\{       

B(z) = z2

(w)21
B1(z

2),

C(z) = z2

(w)1
C1(z

2) + 2 z
(w)21

B1(z
2),

D(z) = 1
(w)21

B1(z
2) + z

(w)1
C1(z

2) + z2D1(z
2).

(2.33)

Taking into account (2.33) and (1.2), we get

(w\theta 0C)(z) =
1

(w)1

\bigl( 
w(\xi C1(\xi 

2))
\bigr) 
(z) +

2

(w)21

\bigl( 
wB1(\xi 

2)
\bigr) 
(z).
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With a use of equation (1.1), the last equation becomes

(w\theta 0C)(z) =
1

(w)21

\Bigl\langle 
w,

(w)1z
2C1(z

2) + 2zB1(z
2) - (w)1\xi 

2C1(\xi 
2) - 2\xi B1(\xi 

2)

z  - \xi 

\Bigr\rangle 
=

1

(w)21

\Bigl\langle 
w, (z + \xi )

(w)1z
2C1(z

2) + 2zB1(z
2) - (w)1\xi 

2C1(\xi 
2) - 2\xi B1(\xi 

2)

z2  - \xi 2

\Bigr\rangle 
=

1

(w)21

\Bigl\langle 
w, (w)1zC1(z

2) + 2B1(z
2) + (w)1\xi C1(\xi 

2) + (w)1z\xi 
2
\bigl( 
\theta z2C1

\bigr) 
(\xi 2)

+ 2\xi 2
\bigl( 
\theta z2B1

\bigr) 
(\xi 2)

\Bigr\rangle 
+

1

(w)21

\Bigl\langle 
w, (w)1z

2\xi 
C1(z

2) - C1(\xi 
2)

z2  - \xi 2
+ 2z\xi 

B1(z
2) - B1(\xi 

2)

z2  - \xi 2

\Bigr\rangle 
.

Or,\Bigl\langle 
w, (w)1z\xi 

2
\bigl( 
\theta z2C1

\bigr) 
(\xi 2) + 2\xi 2

\bigl( 
\theta z2B1

\bigr) 
(\xi 2)

\Bigr\rangle 
= (w)1

\Bigl\langle 
v, (w)1z

\bigl( 
\theta z2C1

\bigr) 
(\xi 2) + 2

\bigl( 
\theta z2B1

\bigr) 
(\xi 2)

\Bigr\rangle 
= 0,

because w is a quasi-antisymmetric linear functional. Then,

(w\theta 0C)(z) =
1

(w)21

\Bigl( \bigl\langle 
w, (w)1\xi C1(\xi 

2) + (w)1z
2\xi 

C1(z
2) - C1(\xi 

2)

z2  - \xi 2
+ 2z\xi 

B1(z
2) - B1(\xi 

2)

z2  - \xi 2
\bigr\rangle 

+ (w)1zC1(z
2) + 2B1(z

2)
\Bigr) 

=
1

(w)1

\Bigl( \bigl\langle 
v, (w)1C1(\xi ) + (w)1z

2C1(z
2) - C1(\xi )

z2  - \xi 
+ 2z

B1(z
2) - B1(\xi )

z2  - \xi 

\bigr\rangle \Bigr) 
+

1

(w)21

\Bigl( 
(w)1zC1(z

2) + 2B1(z
2)
\Bigr) 
,

by virtue of (1.3). Therefore,

(w\theta 0C)(z) =
1

(w)1

\Bigl( 
\langle v, (w)1C1(\xi )\rangle + (w)1z

2
\Bigl( 
v\theta 0C1(\xi )

\Bigr) 
(z2) + 2z

\Bigl( 
v\theta 0B1(\xi )

\Bigr) 
(z2)

\Bigr) 
+

1

(w)21

\Bigl( 
(w)1zC1(z

2) + 2B1(z
2)
\Bigr) 
. (2.34)

Using (2.33) and (1.2), we can deduce that\bigl( 
w2\theta 20B

\bigr) 
(z) =

1

(w)21

\bigl( 
w2B1(\xi 

2)
\bigr) 
(z).

Taking into account (2.21)—(2.22) and using the same process as we did to obtain (2.34),
we get\bigl( 

w2\theta 20B
\bigr) 
(z) =

1

(w)21
B1(z

2)

+
1

(w)1

\Bigl( 
\langle v2, (\theta 0B1)(\xi )\rangle + 2z

\Bigl( 
v\theta 0B1(\xi )

\Bigr) 
(z2) + z2

\Bigl( 
v\theta 20B1(\xi )

\Bigr) 
(z2)

\Bigr) 
. (2.35)

Therefore, on account of (1.16) and (2.33)—(2.35), we conclude that the polynomials B, C
and D given by (2.33) verify (1.15). Here w is also a second degree linear functional. \square 

Theorem 2.4. [17] For a semiclassical linear functional w of class s = 1 fulfilling (1.17)
such that the corresponding MOPS satisfies (2.19), we get the following.
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a) If \Phi (x) = x, we have
(xu)

\prime 
+ 2x2u = 0,

with

\alpha 2n =  - \lambda 
\surd 
\pi 
\Gamma (n+ 1)

\Gamma (n+ 1
2 )

, \alpha 2n+1 =
\Gamma (n+ 3

2 )

\lambda \Gamma (n+ 1)
, n \geq 0.

b) If \Phi (x) = x3  - x, we have\Biggl\{ \bigl( 
(x3  - x)u

\bigr) \prime 

 - 2(\alpha + 1)x2u = 0,

| \alpha | + | (2\alpha + 1)\lambda + 1| \not = 0,
(2.36)

with, for n \geq 0,

\alpha 2n =

\Biggl\{ 
 - 2\lambda 

\surd 
\pi \Gamma (\alpha + 3

2 )\Gamma (n+1)\Gamma (n+\alpha +1)

(4n+2\alpha +1)\Gamma (\alpha +1)\Gamma (n+\alpha + 1
2 )\Gamma (n+

1
2 )
, if \alpha \not =  - 1

2 ,

\lambda , if \alpha =  - 1
2 ,

and

\alpha 2n+1 =

\Biggl\{ 
 - 2\Gamma (\alpha +1)\Gamma (n+\alpha + 3

2 )\Gamma (n+
3
2 )

\lambda 
\surd 
\pi (4n+2\alpha +3)\Gamma (\alpha + 3

2 )\Gamma (n+1)\Gamma (n+\alpha +1)
, if \alpha \not =  - 1

2 ,

1
4\lambda , if \alpha =  - 1

2 .
(2.37)

In the sequel, we denote by \scrL (\alpha ) the linear functional w that satisfies (2.36)—(2.37).
Therefore, we have \vargamma = \scrL ( 12 ).

Theorem 2.5. Among the quasi-antisymmetric semiclassical linear functionals of class
s = 1 only the linear functionals \scrL (p - 1

2 ) are second degree linear functionals, provided
p \in \BbbN .

For the proof, we need the following lemma.

Lemma 2.6. [2] Let w be a second degree semiclassical linear functional satisfying (1.17).
The class of w is s = \mathrm{d}\mathrm{e}\mathrm{g}(\Phi ) - 2 = \mathrm{d}\mathrm{e}\mathrm{g}(\Psi ) - 1.

Proof of Theorem 2.5. According to Theorem 2.4, we distinguish two canonical cases for
\Phi .

– First case: \Phi (x) = x.
According to Lemma 2.6, this case is excluded.

– Second case: \Phi (x) = x3  - x.
Multiplying equation (2.36) by x and using (1.7), we obtain\bigl( 

x2(x2  - 1)\scrL (\alpha )
\bigr) \prime 

+
\bigl( 
 - (2\alpha + 3)x2 + x

\bigr) 
\scrL (\alpha ) = 0.

Applying the operator \sigma to the previous equation and using (1.8)—(1.9), we get\Bigl( 
x(x - 1)

\bigl( 
\sigma x\scrL (\alpha )

\bigr) \Bigr) \prime 

+
1

2

\Bigl( 
 - (2\alpha + 3)x+ 1

\Bigr) \bigl( 
\sigma x\scrL (\alpha )

\bigr) 
= 0. (2.38)

Let us make a suitable shift for \sigma x\scrL (\alpha ),
\widehat \sigma x\scrL (\alpha ) =

\bigl( 
h2 \circ \tau  - 1

2

\bigr) 
\sigma x\scrL (\alpha ).

Using (2.38), we see that \widehat \sigma x\scrL (\alpha ) satisfies (1.18) with

\widehat \Phi (x) = x2  - 1, \widehat \Psi (x) =
1

2

\bigl( 
 - (2\alpha + 3)x+ 2\alpha + 1

\bigr) 
.

Therefore, we have \bigl( 
h2 \circ \tau  - 1

2

\bigr) 
\sigma x\scrL (\alpha ) = \scrJ (\alpha , - 1

2
),
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where \scrJ (a, b) is the classical Jacobi linear functional that satisfies\Bigl( 
(x2  - 1)\scrJ (a, b)

\Bigr) \prime 

+
\Bigl( 
 - (a+ b+ 2)x+ a - b

\Bigr) 
\scrJ (a, b) = 0.

According to Theorem 1.3, Theorem 2.1 and the fact that the shifted linear
functional of a second degree linear functional is also a second degree linear
functional, we obtain that \scrL (\alpha ) is a second degree semiclassical linear functional
of class s = 1 if and only if \alpha = p - 1

2 , p \in \BbbN . \square 

Let us now give the polynomial coefficients B, C and D of (1.14) corresponding to
these linear functionals. For this, we need the following lemmas.

Lemma 2.7. We have
(x2  - 1)\scrL (\alpha ) =  - \scrL (\alpha + 1). (2.39)

Proof. The linear functional \scrL (\alpha ) satisfies (2.36). Multiplying by x2  - 1, we obtain\Bigl( 
(x3  - x)

\bigl( 
(x2  - 1)\scrL (\alpha )

\bigr) \Bigr) \prime 

 - 2(\alpha + 2)
\bigl( 
(x2  - 1)\scrL (\alpha )

\bigr) 
= 0.

Hence (2.39) follows. \square 

Lemma 2.8. [3] Let w and u be two regular linear functionals satisfying the following
relation:

M(x)w = N(x)u,

where M(x) and N(x) are two polynomials.
If w is a second degree linear functional verifying (1.14), then u is also a second degree

linear functional and fulfils
\~B(z)S2(u)(z) + \~C(z)S(u)(z) + \~D(z) = 0,

with \left\{           

\~B(z) = B(z)N2(z),

\~C(z) = N(z)\{ 2B(z)[
\bigl( 
u\theta 0N

\bigr) 
(z) - 

\bigl( 
w\theta 0M

\bigr) 
(z)] +M(z)C(z)\} ,

\~D(z) = B(z)[
\bigl( 
u\theta 0N

\bigr) 
(z) - 

\bigl( 
w\theta 0M

\bigr) 
(z)]2 +M(z)C(z)[

\bigl( 
u\theta 0N

\bigr) 
(z)

 - 
\bigl( 
w\theta 0M

\bigr) 
(z)] +M2(z)D(z).

Using Lemma 2.7 and Lemma 2.8 and the fact that \vargamma = \scrL ( 12 ) satisfies (1.14) with
(2.20), the elements B, C and D in (1.14) are given.

Proposition 2.9. Let us consider w = \scrL (p - 1
2 ) where p \in \BbbN . Then, we have

(x2  - 1)w = ( - 1)p+1(x2  - 1)p\vargamma , p \geq 0,\left\{       
B(z) = z(z2  - 1)2,

C(z) = (z2  - 1)\{ 2z\scrX (z) - 2( - 1)p(iz + 1)(z2  - 1)p\} ,

D(z) = z\scrX 2(z) - 2( - 1)p(iz + 1)(z2  - 1)p\scrX (z) + 2i(z2  - 1)2p,

where
\scrX (z) = z + \lambda + ( - 1)p

\Bigl( 
\vargamma \theta 0

\bigl( 
\xi 2  - 1)p

\bigr) \Bigr) 
(z).

Remark 2.10. 1) From (1.6) and (2.36), we have

w = \lambda x - 1\scrJ (\alpha , \alpha ) + \delta 0. (2.40)

The linear functional \scrJ (\alpha , \alpha ) has the following integral representation [14]:

\langle \scrJ (\alpha , \alpha ), f\rangle =
\Gamma (\alpha + 3

2 )\surd 
\pi \Gamma (\alpha + 1)

\int 1

 - 1

(1 - x2)\alpha f(x)dx, f \in \scrP , \scrR e(\alpha ) >  - 1. (2.41)
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Using (2.40) and (2.41), we obtain

\langle w, f\rangle = f(0) +
\lambda \Gamma (\alpha + 3

2 )\surd 
\pi \Gamma (\alpha + 1)

PV

\int 1

 - 1

(1 - x2)\alpha 

x
f(x)dx, f \in \scrP , \scrR e(\alpha ) >  - 1, (2.42)

where PV means Cauchy’s principal value of the integral.
Therefore, from Theorem 2.5 and (2.42), we have

\langle \scrL (p - 1

2
), f\rangle = f(0) +

\lambda \Gamma (p+ 1)
\surd 
\pi \Gamma (p+ 1

2 )
PV

\int 1

 - 1

(1 - x2)p

x
\surd 
1 - x2

f(x)dx, f \in \scrP , p \in \BbbN . (2.43)

The case p = 1 is \vargamma .
2) From (2.43), we get for n \geq 0:\bigl( 

\scrL (p - 1

2
)
\bigr) 
2n+1

= \langle \scrL (p - 1

2
), x2n+1\rangle 

=
\lambda \Gamma (p+ 1)
\surd 
\pi \Gamma (p+ 1

2 )

\int 1

 - 1

(1 - x2)p - 
1
2x2ndx

=
\Bigl( \lambda \Gamma (p+ 1)
\surd 
\pi \Gamma (p+ 1

2 )

\Bigr) \Bigl( \Gamma (n+ 1
2 )\Gamma (p+

1
2 )

\Gamma (n+ p+ 1)

\Bigr) 
=

\lambda \Gamma (p+ 1)\Gamma (n+ 1
2 )\surd 

\pi \Gamma (n+ p+ 1)
.
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Mat. Pura ed Appl., 6 (1991), 19-53.
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