Methods of Functional Analysis and Topology METHODS
Vol. 29 (2023), no. 3-4, pp. 134-144 M FA I OF FUNCTIONAL ANALYSIS

https://doi.org/10.31392/MFAT-npu26_3-4.2023.07 AND TOPOLOGY

SECOND DEGREE SEMICLASSICAL LINEAR FUNCTIONALS OF
CLASS ONE. THE QUASI-ANTISYMMETRIC CASE

MOHAMED ZAATRA

ABSTRACT. An orthogonal sequence with respect to a regular linear functional w is
said to be semiclassical if there exist a monic polynomial ® and a polynomial ¥ with
deg(¥) > 1, such that (CDw)' + Ww = 0. Recently, all semiclassical monic orthogonal
polynomial sequences of class one satisfying a three term recurrence relation with
Bo = —ap, Bnt+1 = an — any1 and Yp41 = —a% with a, # 0, n > 0, have been
determined [17].

In this paper, we point sequences of the above family such that their corre-

sponding Stieltjes function S(w)(z) = — E (l:J):;
z
n>0

B(2)S?(w)(z) + C(2)S(w)(2) + D(z) = 0, where B, C, D are polynomials.

satisfies a quadratic equation

OproroHajyibHa MOC/TIOBHICT BiJJHOCHO PEryJIsipHOrO JIiHIAHOrO (byHKIIOHAIA W
HA3WBAETHCsl HAIIBKJIACHYHOIO, sAKINO icHye MoHOM P i mosinom ¥, deg(¥) > 1, raxi,
110 (@w), + Ww = 0. OcranniMm gacoMm Bci HamiBK/JIacH4HI MOHiYHI OpPTOroHaJbHI
HOJIIHOMIAJIbHI MTOCJIIJOBHOCTI HEPIIOro KJjiacy, [0 33 0BOJIbHAIOTH TPUUIECHHOMY
DPEKYPEHTHOMY BiJIHOIIEHHIO, KOJU ) = —a0, Bntl = Qn — Qpt1 1 Yntl = —Q2 3
an # 0, n > 0, 6ynu BusHaveHi [17].

B crarTi BKasyoThcs OCIIiIOBHOCTI BUleBKa3aHol ciM’l Taki, 1o 1X BignosigHa

dyuxuia Crinreeca S(w)(z) = — g (wJ)rnl
Z’,’L
n>0

B(2)S%(w)(2) + C(2)S(w)(z) + D(2) =0, ne B, C, D — nosizomu.

3aJ0BOJIbHAE KBaJpPaTUIHOMY piBHHHHIO

1. INTRODUCTION AND PRELIMINARY RESULTS

A 1995 paper of Maroni [10] provides an introduction to second degree linear functionals.
These linear functionals are characterized by the fact that their formal Stieltjes function
S(w) satisfies a quadratic equation B(z)S?(w)(z) + C(2)S(w)(z) + D(z) = 0. They have
been studied in [7, 20] and [16] in the framework of orthogonality on several intervals.
Later in [11] and [10], an algebraic approach to such second degree linear functionals
as an extension of the Tchebychev linear functionals was given. The second degree
linear functional set is a part of the semiclassical one [9, 10]. Among the second degree
semiclassical sequences of orthogonal polynomials only those which are of class s = 0 and
those of class s = 1, which are symmetric and quasi-symmetric, are completely described
in the literature [1, 2, 3, 19]. See also [4, 5, 8, 18].

In this contribution we are dealing with second degree linear functionals which are
semiclassical of class s = 1 and such that their corresponding sequence of monic orthogonal
polynomials {W,,},>¢ verifies the recurrence relation

Was2(@) = (2 = (@ = an41) | Warsa (&) + a2 Wa(2), n>0,
Wi(z) =z + ao, Wo(z) =1,

2020 Mathematics Subject Classification. 42C05, 33C45.
Keywords. Orthogonal polynomials, Semiclassical linear functionals, Second degree linear functionals.

134


https://doi.org/10.31392/MFAT-npu26_3--4.2023.07

SECOND DEGREE SEMICLASSICAL LINEAR FUNCTIONALS OF CLASS ONE 135

with a,, # 0, n > 0. This family has been a subject of some works. For instance, Maroni
[12, 15] characterized such sequences by a particular quadratic decomposition and by a
perturbation of a symmetric linear functional.

The structure of the manuscript is as follows. The first section is devoted to preliminary
results and notations used in the sequel. In the second section, we focus our attention on
second degree linear functionals. More precisely, all second degree semiclassical linear
functionals of class s = 1 such that their corresponding MOPS verify the above mentioned
recurrence relation, are determined. Finally, the polynomial coefficients of the second
degree equation fulfilled by the corresponding formal Stieltjes function are deduced.

In the sequel, we will recall some basic definitions and results. The field of complex
numbers is denoted by C. The vector space of polynomials with coefficients in C is
denoted by P and its dual space is denoted by P’. We denoted by (w, f) the value of
w € P on f € P. In particular, we denote by (w), = (w,2™), n > 0, the moments of w.
For any linear functional (form) w, any polynomial h, let Dw = w’, hw and &y be the
linear functionals defined by

<w/7f>::_<waf/>7 <hw7f>::<w7hf>7 <507f>:f(0)7 fep.

We recall the definition of right-multiplication of a linear functional w by a polynomial

h(z) = i a,z”:
v=0

(wh)(z) = (w, W> = Z (fﬁ ay () )" (1.1)

m=0 v=m
By duality, we obtain the Cauchy’s product of two linear functionals:
(wv, f) == (w,vf), w,ve P, fewP.

We define [14] the form (z — ¢)"lw, ¢ € C, through

<(x - c)flw,f> = (w,0.f),

with
(0cf)(z) = W, ceC, feP. (1.2)
From the definition, one gets
fz) = f(§)

(wbo f)(x) = (w, ), weP, feP. (1.3)

r—£

We introduce an operator o : P — P defined by (o f)(z) = f(2?) for all f € P. By
transposition, we define cw as

(ow, f) = (w,of), weP, feP. (1.4)

We will also use the so-called formal Stieltjes function associated with w € P and
defined by

SWX@:f§:$ﬁ- (1.5)

n>0

The following results are fundamental [13, 14].
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Lemma 1.1. For any f € P and w € P,
7 Hzw) = w — (w)odo, (
(fw) = fu' + fw, (
f(@)(ow) = o (f(z?)w), (
ow = 2(0(3:10))/7 (1.
(@™ w)1)(2) = (Bo(w))(2) = (w(6of)) (=), 1
(w(0 ) (2) = ((ow)f)(2) + (o (€w) (o)) (=2), (L.
(60(0.)) (=) = 2(c(801)) (2). (L
Let us recall that a linear functional w is said to be regular (quasi-definite) if there
exists a sequence {W,, },,>0 of polynomials with deg W,, = n, n > 0, such that
(W, W,Wp) = 70n.m, rn 0, n>0.

We can always assume that each W, is monic, i.e. W, (x) = 2"+ (lower degree terms).
Then the sequence {W,, },,>¢ is said to be orthogonal with respect to w (monic orthogonal
polynomial sequence (MOPS) in short).

It is a very well-known fact that the sequence {W,, },,>¢ satisfies a three-term recurrence
relation (see, for instance, the monograph by Chihara [6]),

Wiga(®) = (2 = But1)Wat1(®) = Y1 Wa(z), n >0,
Wl(m) =T — 507 WO(Q:) = 17

with (ﬂn,'ynﬂ) € Cx (C—{0}), n > 0. By convention we set v9 = (w)o.

A linear functional w is said to be normalized if (w)o = 1. In this paper, we suppose
that any linear functional is normalized.

We recall that a linear functional w is called symmetric if (w)2,4+1 = 0,n > 0. The
conditions (w)a,4+1 = 0,n > 0, are equivalent to the fact that the corresponding MOPS
{W, }n>0 satisfies the three-term recurrence relation (1.13) with 8, = 0,n > 0 [6].

Now, let us recall some features of the second degree semiclassical character [10].

(1.13)

Definition 1.2. A linear functional w is said to be a second degree linear functional if it
is regular and there exist two polynomials B and C such that

B(2)S%(w)(z) + C(2)S(w)(2) + D(z) = 0, (1.14)
where D depends on B, C' and w, and
D(2) = (wbyC)(2) — (w02 B)(2). (1.15)

The regularity of w means that we must have B # 0, C2 —4BD # 0 and D # 0.
The following expressions are equivalent to (1.14) [10]:

B(z)w? = zC(x)w, (w?,00B) = (w,C). (1.16)

In the sequel, we shall assume B to be monic.
Let us recall that a linear functional w is called semiclassical if it is regular and there
exist two polynomials ® and W, where ®(x) is monic and deg(¥) > 1, such that

(Pw) + Tw = 0. (1.17)

The class of a semiclassical linear functional w is s = max (deg(®) — 2, deg(¥) — 1) if
and only if the following condition is satisfied:

[T (12'(0) + w(e)l + [(w, 620 +6.)]) # 0,

cEZp
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where Zg is the set of zeros of ® [15].

If s =0, w is called a classical linear functional.

As a result, if w is a semiclassical linear functional of class s satisfying (1.17), then the
shifted linear functional @ = (he—1 0 7—y)w, a € C*, b € C, is also semiclassical having
the same class as that of w and satisfying the equation

(®®) + U =0, (1.18)
with R R
O(z) = a '®(azx +b), ¥(z) = a' 'V (az +b), t = deg(P),
where, for each polynomial f,

(nw, f) == (w, f(x+0)),  (haw, f) := (w, f(az)).
A second degree linear functional w is a semiclassical linear functional and satisfies (1.17),
with [10]
k®(z) = B(z)(C?*(z) — 4B(z)D(z)),
FU(z) = 2 B@)(C2(x) ~4B@)D()) . k#0,
where k is the normalization factor.

A second degree character is kept by shifting. Indeed, if w is a second degree linear
functional satisfying (1.16), then @ is also a second degree linear functional [10]. It
satisfies

B(z)®? = 2C(2)®, (@2,00B) = (@,C),
with
B(z) =a "Blax +b), C(z) =a'""Claz +b), r=deg(B).
We finish this section by recalling an important result.

Theorem 1.3. [3] Among the classical linear functionals, only the Jacobi linear func-
tionals J(p — %, q— %) are second degree linear functionals, provided p+q >0, p,q € Z.

2. SECOND DEGREE QUASI-ANTISYMMETRIC SEMICLASSICAL LINEAR FUNCTIONALS OF
CLASS ONE

From now on, let w be a semiclassical linear functional of class s = 1 satistying (21)
and its corresponding MOPS {S,, },>¢ fulfills

Wigo(z) = (37 — (o — an+1))Wn+1(x) +arWa(z), n>0,

(2.19)
Wi (z) = = + ao, Wo(z) =1,

with «;, #£ 0, n > 0.

Then, its associated linear functional w is said to be quasi-antisymmetric (i.e (w)2n4+2 =
0,n > 0). Equivalently, zow = 0. For more information about these linear functionals
see [12, 15].

Let us begin with an example ¢ of second degree quasi-antisymmetric semiclassical

linear functional of class one. This example is given in [10]. The linear functional ¥
satisfies (1.14) with

B(z) =2z C(z)=23z+1), D(z)=2i, (2.20)
and (1.17) with
d(z) =2 -z, VU(z)=-3z2%
Theorem 2.1. The quasi-antisymmetric linear functional w is a second degree linear

functional if and only if the form (w);v = o(xw) is a second degree linear functional.

For the proof, we need the following lemmas.
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Lemma 2.2. If w is a quasi-antisymmetric linear functional, then we have
row? = (U(xw))2, (2.21)
o(zw?) = 20 (zw). (2.22)

Proof. By using equations (1.1) and (1.4), we obtain
(wow?, x™) = (w?, 2*"+?)

2n+2

= (w, > a*(w)ania-k)
k=0

2k+1
w7 E x 2 +1— 2k>

Hence (2.21) follows.
Now, taking into account the relations (1.1) and (1.4), we get

(o(aw?), ") = (w?, 2"

2n+1
= <w7 Z xk(w)2n+1—k>
k=0
= (w, 2®" " + (w)an41 + Zm W)2n41-2k)
=2(o(zw), = Zf W)2nt1-2k)
:2< (:17w SCU’LU ZIE 2n+1 2k>
Here we have the result (2.22). O

Lemma 2.3. If w is a quasi-antisymmetric linear functional and f € P, then we have

((ew)f)(2) = £(2), (2.23)
(who(0f))(2) = ((0€w)(00)) (%) + 2(60 f) (), (2.24)
(w00(0f))(2) = z((0€w)*(05.1)) (=*) + 2((o€w) (o)) (=*) + 2(00f)(2%),  (2.25)
(w*03(0f)) (2) = ((0€w)*(651)) (%) + 2((0€w)(63.)) () + () (%) (2.26)

Proof. The proof of (2.23) is evident from (1.1). Then, (2.24) is a consequence of them
and (1.10)—(1.11). The property (2.25) is obtained from (1.6), (1.10)—(1.12) and (2.21)—
(2.22). Finally, (2.26) is evident from (1.10) and (2.25). O

Proof of Theorem 2.1. Let us write the polynomials B, C' and D according to their even
and odd parts,

B(z) = B*(a?) + 2B°(2?),
C(x) = C¢(z?) + 2C°(2?), (2.27)
D(z) = D¢(2?) + 2D°(2?).
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Now, from (1.5) and the fact that w is a quasi-antisymmetric linear functional, we have
(w)128()(2%) = 28(w)(2) + 1. (2.28)
Then, from (2.28), (1.14) reduces to
B() ()28 ()(=?) - 1)2 +20() () 28()(:2) = 1) + 22D(2) = 0,
Equivalently,
(0)12°B(2)S*(v)(2%) + (w)1(2%C(2) — 22B(2))S(v)(2*) + 2°D(z) + B(z) — 2C(2) = 0.
Taking into account (2.27) and the even component in left hand side, we get

B1(2)8%(v)(2) + C1(2)8(v)(2) + D1(2) =0,

with
Bi(2) = (w){zB°(2),
Ci(z) = (w)12(C%(2) — 2B°(2)), (2.29)
Dy (z) = z(D*(2) — C°(z)) + B*(2).
Now, taking into account (1.11) and (2.23)—(2.27), we get from (1.15), after some calcula-
tions, that
D¥(2) = () ((106C9)) () = 2(v00B%)(2) ) = ()3 (03B%) (2) + C°(2) — (60 B°) (2):

Or, for each polynomial f, we have
(wf)(2) = 2(wbo f)(2) + (w, f)- (2.31)
Then, from (2.30) and (2.31), we get from (2.29) that
D1(2) = (v0oC1(2) — (vV203B1)(2) + (w)1 (v, 2B° — C®) + (w)3(v?, 6y B¢) + B%(0).
But, from (1.16) and (2.27), we can deduce
(ow?, B) + ((0€w?), B%) = ((0€w), C°).
Thus, from (1.6) and (2.21)—(2.22), we get
(w)T(v?, 00B%) + 2(w)1 (v, B®) + B*(0) = (w)1 (v, C°).

Therefore, D1(z) = (v0oC1(2) — (v?03B1)(2) and also v is a second degree linear functional.
Conversely, we assume that v is a second degree linear functional. Then there exist
two polynomials B; and C; such that

B1(2)S?(v)(2) + C1(2)S(v)(2) + D1(2) = 0, (2.32)
with
Di(z) = (v0oC1)(2) — (v?03B1)(2).

Making the change of variable z — 22 in (2.32) and substituting (2.28) into the obtained
equation, we get (1.14) with
22
B(z) = 2 Bi(2%),

C(2) = Z-C1(22) + 225 By (22), (2.33)

(w)1 (w)i

D(z) = ﬁBl(zz) + ﬁCl(zz) + 22Dy (2?).

Taking into account (2.33) and (1.2), we get

(whoC)(2) = ﬁ(w@a(g?)))(z) +

2 w 2 z
o (W) 2)

=N
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With a use of equation (1.1), the last equation becomes

1 (w)122C1(22) + 22B1(2%) — (w)1£2C1(€2) — 26 B4 (€2)
(whoC)(2) = (w)? <w, 1 Py : >

. 1 (’lU)125201(252) + 2231(22) — (w)1§201(§2) — 2531(62)
_W<w,(z+§) ey >
_ ﬁ@; (w)1201(22) + 2B, (22) + (w)hiC1(€2) + (w)1 262 (0.2C1) (€7)

+26%(6.2B1) (€%))

1 0122 701 2 B122 7B1 2
Or,

(w, (w1262 (0.2C1) (€%) + 262 (02 B ) (7))
= ()i (v, (W)12(02C1) (€%) +2(0.2B1) (€7)) =0,

because w is a quasi-antisymmetric linear functional. Then,

22 - 1 2
(B 0)(2) = oy (10, ()1 EC (€D + ()22 THE ) HED

42 B = B,

wp? < )-5
+ (w)12C1 (%) + 2]31(22)>

- <£)1 ((v, @nca(e) + (w)leW N zzw>)
+ ﬁ ((w)1201(z2) + 231(22))’

by virtue of (1.3). Therefore,

(0C)(2) = g ({0 ) CEN + (w12 (1001 €)) (7) + 25 (0051 (6)) ()
+ (uf)% ((w)lzC’l(z2) +2B1(z2)>. (2.34)
Using (2.33) and (1.2), we can deduce that
(w035 (2) = 1o (wBr(E)) ).

Taking into account (2.21)—(2.22) and using the same process as we did to obtain (2.34),
we get

(WP3B)(2) = o Bu()
+ ﬁ (<1}2’ (6o B1)(§)) + 22(@9031(5))(z2) e (U9331(£)) (22)) (2.35)

Therefore, on account of (1.16) and (2.33)—(2.35), we conclude that the polynomials B, C
and D given by (2.33) verify (1.15). Here w is also a second degree linear functional. O

Theorem 2.4. [17] For a semiclassical linear functional w of class s = 1 fulfilling (1.17)
such that the corresponding MOPS satisfies (2.19), we get the following.
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a) If ®(x) = x, we have
(zu) + 22%u =0,
with
I'(n+1) T(n+3)
n — -\ = 1\ n = Xt/ 1 Z 0.
Qs \/EF(nJr I 2041 = SR n

b) If ®(z) = 23 — x, we have
3 _ " 2y =
((@* —2)u) —2(a+1)a?u=0, (2.36)
la] + [(2a+ 1)A + 1] # 0,
with, for n >0,
{ 22/l (a+3)D(n+1)T(nta+1) if o # _%7
Qop =

T (nt2a+ ) (a+)(ntat)T(nt3)’
)\7 ZfOé = _%7
and

2F(a+1)1—‘(n+a+%)r(n+%) ZfOé 7& _
QAon41 = {

T AVm(Ant2a+3)T(a+3)D(n+1)T(nta+1)’

1 .
an Zfa:—

’ (2.37)

N|—= N

In the sequel, we denote by L(«) the linear functional w that satisfies (2.36)—(2.37).
Therefore, we have ¥ = £(3).

Theorem 2.5. Among the quasi-antisymmetric semiclassical linear functionals of class

s =1 only the linear functionals L(p — %) are second degree linear functionals, provided

peN.
For the proof, we need the following lemma.

Lemma 2.6. [2| Let w be a second degree semiclassical linear functional satisfying (1.17).
The class of w is s = deg(®P) — 2 = deg(¥) — 1.
Proof of Theorem 2.5. According to Theorem 2.4, we distinguish two canonical cases for
P.

— First case: ®(x) = x.

According to Lemma 2.6, this case is excluded.

— Second case: ®(z) =23 — x.

Multiplying equation (2.36) by = and using (1.7), we obtain
(2%(2? = DL(0) + (= 20+ 3)a? + 2)L(a) = 0.
Applying the operator o to the previous equation and using (1.8)—(1.9), we get
1
(m(x - 1)(0x£(a))> + 5( — (20 +3)z + 1) (c2L(e)) = 0. (2.38)

Let us make a suitable shift for oxL(«),

—

oxL(a) = (hg o T_%)Ul’ﬁ(()é).
Using (2.38), we see that UZC-(\&) satisfies (1.18) with
~ ~ 1
d(z) =2 -1, U(z)= 5( — (2a+3)z + 20+ 1).

Therefore, we have
1

(h2 ) Tf%)oxﬁ(oz) = J(a, —5),
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where J(a,b) is the classical Jacobi linear functional that satisfies

((mQ—l)J(a,b)),—i- (—(a+b+2)x+a—b)](a,b):0

According to Theorem 1.3, Theorem 2.1 and the fact that the shifted linear
functional of a second degree linear functional is also a second degree linear
functional, we obtain that £(«) is a second degree semiclassical linear functional
ofclasss:lifandonlyifa:p—%,pGN. O

Let us now give the polynomial coefficients B, C' and D of (1.14) corresponding to
these linear functionals. For this, we need the following lemmas.

Lemma 2.7. We have
(2 = 1)L(a) = —L(a + 1). (2.39)

Proof. The linear functional £(«) satisfies (2.36). Multiplying by 2% — 1, we obtain

(@ = ) (@ = DE(@)) —2(a+2)((a ~ DE() =0.
Hence (2.39) follows. O

Lemma 2.8. [3| Let w and u be two regular linear functionals satisfying the following
relation:
M (z)w = N(z)u,
where M (x) and N(z) are two polynomials.
If w is a second degree linear functional verifying (1.14), then u is also a second degree
linear functional and fulfils

B(2)S5%(u)(2) + C(2)S(u)(2) + D(2) = 0,

with
B(z) = B(z)N*(2),
G(2) = N(2)/{2B()[(u0oN) (2) — (whoM) ()] + M(2)C(2)},
D(z) = B(2)[(uboN) (2) — (who M) (2)]> + M (2)C(2)[(uboN)(2)

— (who M) (2)] + M?(z)D(z).
Using Lemma 2.7 and Lemma 2.8 and the fact that ¥ = £(3) satisfies (1.14) with
(2.20), the elements B, C' and D in (1.14) are given.
Proposition 2.9. Let us consider w = L(p — 7) where p € N. Then, we have
(@* = Dw = (=)@ -1, p>0,
B(z) = z(22 — 1)?,
C(z) = (2% = 1){22X(2) — 2(=1)P(iz + 1)(22 — 1)P},
D(z) = 2X2(2) — 2(=1)P(iz + 1) (22 — 1)PX(2) + 2i(2% — 1)?P
where
X(z) =2+ A+ (—1)P (1990 (€2 - 1)?)) (2).
Remark 2.10. 1) From (1.6) and (2.36), we have
w= Az T (a, ) + &. (2.40)

The linear functional J (o, o) has the following integral representation [14]:

Lo+ ) ; /1 (1-22)°f(x)de, fEP, Re(a)>-1. (2.41)

(J(a,a), f) = W _1
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Using (2.40) and (2.41), we obtain

(w, f) = £(0) + AF(O‘J“ PV/ Q=2 e, feP, Re(a)>—1, (2.42)

(L(p—

VT (a
where PV means Cauchy s principal value of the integral.
Therefore, from Theorem 2.5 and (2.42), we have

1, AL(p+1) b —a?)p P\
2)’f>f(0)+ﬁr(p+§)Pv/1m\/ﬁf( Ydz, feP, peN. (243)

The case p=1is ¥.

2) From (2.43), we get for n > 0:

(L0~ 3))gupr = 1L~ 50,27

_ )\F(p+1))/1 (1_m2)p—%x2ndx

VIL(p + 3
~( A (p+1) )(F(n+ ST+ %))
Val(p+ 3) I'(n+p+1)

_A(p+1)T(n+3)
- JaT(n+p+1)
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