

NEW OPTICAL SOLUTIONS FOR THE WU-ZHANG SYSTEM WITH TIME FRACTIONAL CONFORMABLE DERIVATIVE

KAMAL AIT TOUCHENT, J. EL AMRANI, AND RACHID BAHLOUL

ABSTRACT. In this paper, the sine-Gordon expansion method is implemented to obtain new explicit solutions for the nonlinear Wu-Zhang system with a time-fractional conformable derivative. The solutions constructed are plotted with the Maple software and expressed by three types of functions: hyperbolic function solution, exponential function solution and trigonometric function solution. The nonlinear fractional partial differential equation is converted into an ordinary differential equation of integer order. This method is used to solve a fractional Wu-Zhang system. These solutions might be important and highly useful in various scientific fields. It is shown that this method is very efficient for constructing exact solutions of nonlinear fractional partial differential equations.

Реалізовано метод розширення синус-Гордона для отримання нових явних розв'язків для нелінійної системи Ву-Жанга із дробове-конформною похідною за часом. Отримані розв'язки будується за допомогою програмного забезпечення Maple і виражуються трьома типами функцій: гіперболічними функціями, показниковими функціями та тригонометричними функціями. Нелінійне диференціальне рівняння з дробовими похідними перетворюється в звичайне диференціальне рівняння з цілим порядком. Цей метод використовується для розв'язку системи У-Чжан з дробовими похідними. Рішення можуть бути важливими і дуже корисними у різних галузях науки. Показано, що це метод є дуже ефективним для побудови точних розв'язків нелінійних рівнянь з дробовими похідними.

1. INTRODUCTION

Fractional calculus has attracted great interest and it has been considered as a powerful tool to model many physical phenomena in various scientific areas such as physics, fluid mechanics, chemistry, biology and mathematical physics. The same importance and interest are given to fractional partial differential equations, due to their applications in various branches of nonlinear sciences including mechanics, electrodynamics, elasticity and other applications. Consequently, many authors tried to solve these equations through several efficient techniques, such as homotopy perturbation Sumudu transform technique [1, 2, 3, 4], $\tan(\phi(\xi)/2)$ – expansion method [13], Riccati equation expansion technique [16], Lie symmetry method [6, 7], Adomian decomposition technique [5], homotopy perturbation technique [14], generalized trigonometry functions [15], Jacobian elliptic function technique [17] and extended Jacobian elliptic function technique [18].

In the current paper, we use the effective sine-Gordon expansion method to construct a new exact solution for the Wu-Zhang system [25, 26, 27, 28] with a time-fractional conformable derivative.

On the other hand, the following sinh-Gordon equation

$$\frac{\partial^2 u}{\partial x \partial t} = \alpha \sinh u, \quad (1.1)$$

arises in several scientific fields, where α is a constant.

2020 *Mathematics Subject Classification.* 26A33, 35C07, 35R11.

Keywords. Sinh-Gordon expansion method, fractional Wu-Zhang system, fractional conformable derivative.

Using the wave transformation

$$u(x, t) = U(\xi), \quad \xi = \mu(x + y - \lambda t),$$

equation (1.1) becomes an ordinary differential equation as follows:

$$\frac{\partial^2 U}{\partial \xi^2} = -\frac{\alpha}{\mu^2 \lambda} \sinh U, \quad (1.2)$$

where λ and μ are respectively the wave speed and wave number.

Now, multiplying both sides of (1.2) by the first order derivative of U , we get

$$\frac{\partial U}{\partial \xi} \times \frac{\partial^2 U}{\partial \xi^2} = -\frac{\alpha}{\mu^2 \lambda} \sinh U \times \frac{\partial U}{\partial \xi},$$

which implies

$$\frac{\partial U}{\partial \xi} \times \frac{\partial^2 U}{\partial \xi^2} = -\frac{2\alpha}{\mu^2 \lambda} \sinh\left(\frac{1}{2}U\right) \times \cosh\left(\frac{1}{2}U\right) \times \frac{\partial U}{\partial \xi}, \quad (1.3)$$

by integrating (1.3), we obtain

$$\left(\frac{d}{d\xi} \frac{1}{2}U\right)^2 = -\frac{\alpha}{\mu^2 \lambda} \sinh^2\left(\frac{1}{2}U\right) + c, \quad (1.4)$$

where c is a constant.

Taking into consideration

$$c = 0, \quad \alpha = -\mu^2 \lambda, \quad \frac{1}{2}U = w,$$

equation (1.4) becomes

$$\frac{dw(\xi)}{d\xi} = \sinh w(\xi).$$

The Jacobi elliptic function solutions are obtained by converting equation (1.2) into

$$\frac{d^2 w}{d\xi^2} = \frac{1}{2} \sinh 2w, \quad (1.5)$$

with the assumptions $U = 2w$ and $\alpha = -\mu^2 \lambda$. Equation (1.5) takes the form:

$$\left(\frac{dw}{d\xi}\right)^2 = \sinh^2 w + c, \quad (1.6)$$

which can be used in the implemented method, where c is a constant of integration. Therefore, the solutions of (1.6) are as follows:

$$\sinh[w(\xi)] = cs(\xi; m), \quad (1.7)$$

$$\cosh[w(\xi)] = ns(\xi; m), \quad (1.8)$$

where m is a Jacobian elliptic functions module.

$$cs(\xi; m) = \frac{cn(\xi; m)}{sn(\xi; m)}, \quad ns(\xi; m) = \frac{1}{sn(\xi; m)},$$

with the properties

$$\frac{dcs(\xi; m)}{d\xi} = -ns(\xi; m)ds(\xi; m), \quad \frac{dns(\xi; m)}{d\xi} = -cs(\xi; m)ds(\xi; m).$$

Inserting (1.7) and (1.8) into (1.6) shows that the constant c must satisfy

$$c = 1 - m^2. \quad (1.9)$$

The rest of this article is arranged as follows. In Section 2, we provide some fundamental properties of the fractional conformable derivative. Section 3, is devoted to the main steps of the sinh-Gordan expansion method. In Section 4, we apply this technique to

construct new explicit solutions of the fractional Wu-Zhang system with conformable derivative. Finally, some concluding remarks are given in Section 5.

2. CONFORMABLE DERIVATIVE PROPERTIES

. There are various definitions of fractional derivative [19, 20, 21, 22, 29]. In the last years, the new definition called fractional conformable derivative is proposed by Khalil and all. [23]. In this section, we give its properties.

Definition 2.1. The conformable derivative of order α for a function $f : [0, \infty) \rightarrow R$ is defined as

$$T_\alpha(f)(t) = \lim_{\epsilon \rightarrow 0} \frac{f(t + \epsilon t^{1-\alpha}) - f(t)}{\epsilon},$$

where $t > 0, \alpha \in (0, 1)$.

Now, we provide some properties of this novel fractional derivative:

- $T_\alpha(\gamma f + \beta g) = \gamma T_\alpha(f) + \beta T_\alpha(g)$ for all real constant γ and β ,
- $T_\alpha(fg) = fT_\alpha(g) + gT_\alpha(f)$,
- $T_\alpha(t^p) = \alpha t^{\alpha-p}$ for all α ,
- $T_\alpha\left(\frac{g}{f}\right) = \frac{fT_\alpha(g) - gT_\alpha(f)}{f^2}$,
- $T_\alpha(C) = 0$, where C is a constant.

Moreover, the differentiability of f implies that $T_\alpha(f) = t^{1-\alpha} \frac{df}{dt}(t)$.

Theorem 2.2. Suppose that $f : [0, \infty)$ is differentiable and conformable differentiable of order α and the function g is also differentiable. Then

$$T_\alpha(fog) = t^{1-\alpha} g'(t) f'(g(t)).$$

3. DESCRIPTION OF THE METHOD

The sinh-Gordon equation expansion technique [24], is highly efficient for finding new explicit solutions of engineering and physical fractional problems appearing in various scientific areas. This method is based on equation (1.5) or equation (1.6) and it will be described as follows.

Consider the following equation with the fractional time-conformable derivative:

$$N(u, T_t^\alpha u, T_x^\alpha u, T_y^\alpha u, \dots) = 0. \quad (3.10)$$

Using the transformation

$$u(x, y, t) = U(\xi), \quad \xi = \mu \left(\frac{x^\alpha}{\alpha} + \frac{y^\alpha}{\alpha} - \lambda \frac{t^\alpha}{\alpha} \right),$$

equation (3.10) is transformed into an ordinary differential equation,

$$Q\left(U, U', \mu U', -\lambda U', U'', \mu^2 U'', \dots\right) = 0. \quad (3.11)$$

Now, we suppose that a solution for (3.11) takes the following form:

$$U(w(\xi)) = A_0 + \sum_{i=1}^n \cosh^{i-1} w [A_i \sinh w + B_i \cosh w], \quad (3.12)$$

where $w = w(\xi)$ satisfies (1.5) or (1.6) and (1.9), $A_i (i = 0, 1, 2, \dots, n)$, $B_i (i = 0, 1, 2, \dots, n)$, are constants to be found later.

We apply the balance principle by taking nonlinear terms and the higher derivative in equation (3.11) to find the value of the integer n .

Now, put the coefficients of $\sinh^i w \cosh^j w$ that have the same power to be zero, to obtain a system of equations including unknowns $\mu, \lambda, A_i (i = 0, 1, 2, \dots, n)$, $B_j (j = 0, 1, 2, \dots, n)$.

Finally, we solve the obtained system by using the Maple software, then we substitute $A_0, A_1, B_1, \dots, A_n, B_n, \mu, \lambda$ in (3.12).

Remark 3.1. . If $m \rightarrow 1$,

$$cs(\xi, m) \rightarrow csch(\xi), \quad ns(\xi, m) \rightarrow \coth(\xi),$$

If $m \rightarrow 0$,

$$cs(\xi, m) \rightarrow \cot(\xi), \quad ns(\xi, m) \rightarrow \csc(\xi).$$

4. IMPLEMENTATION OF THE METHOD

Consider the nonlinear fractional Wu-Zhang system

$$\begin{cases} T_t^\alpha u = -uu_x - v_x, \\ T_t^\alpha v = -vu_x - uv_x - \frac{1}{3}u_{xxx}, \end{cases} \quad (4.13)$$

where $\alpha \in (0, 1)$, $u = u(x, t)$ is the surface velocity of water and $v = v(x, t)$ is the water elevation. The following wave transformation

$$\begin{cases} u(x, t) = U(\xi), \\ v(x, t) = V(\xi), \\ \xi = x - \lambda \frac{t^\alpha}{\alpha}, \end{cases}$$

where λ is a constant, reduces system (4.13) to the following system of ODEs:

$$\begin{cases} T_t^\alpha u = -\lambda U', \\ uu_x = UU', \\ V_x = V', \\ T_t^\alpha v = -\lambda V', \\ vu_x = VU', \\ uv_x = UV', \\ \frac{1}{3}u_{xxx} = \frac{1}{3}U'''. \end{cases}$$

Then, we obtain the new system as follows:

$$\begin{cases} \lambda U' = UU' + V', \\ \lambda V' = VU' + UV' + \frac{1}{3}U'''. \end{cases} \quad (4.14)$$

By taking the integration constant to be zero, we integrate the first equation in system (4.14) and obtain

$$V = \lambda U - \frac{U^2}{2}. \quad (4.15)$$

Inserting equation (4.15) into the second equation of system (4.14), we have the following nonlinear differential equation

$$2U'' - 3U^3 + 9\lambda U^2 - 6\lambda^2 u = 0. \quad (4.16)$$

Now, balancing the terms U'' and U^3 , we get $n = 1$. Therefore, the solutions of equation (4.16) take the following form:

$$U(\xi) = A_0 + A_1 \sinh(w(\xi)) + B_1 \cosh(w(\xi)). \quad (4.17)$$

Substituting (4.17) into (4.16), we get the following family of equations for λ, A_0, A_1 and B_1 :

$$\begin{cases} eq1 = -9 A_1^2 B_1 - 3 B_1^3 + 4 B_1, \\ eq2 = -3 A_1^3 - 9 A_1 B_1^2 + 4 A_1, \\ eq3 = -9 A_0 A_1^2 - 9 A_0 B_1^2 + 9 A_1^2 \lambda + 9 B_1^2 \lambda, \\ eq4 = -18 A_0 A_1 B_1 + 18 A_1 B_1 \lambda, \\ eq5 = -9 A_0^2 B_1 + 18 A_0 B_1 \lambda + 9 A_1^2 B_1 - 6 B_1 \lambda^2 + 2 B_1 c - 4 B_1, \\ eq6 = -9 A_0^2 A_1 + 18 A_0 A_1 \lambda + 3 A_1^3 - 6 A_1 \lambda^2 + 2 A_1 c - 2 A_1, \\ eq7 = -3 A_0^3 + 9 \lambda A_0^2 + 9 A_0 A_1^2 - 6 \lambda^2 A_0 - 9 A_1^2 \lambda. \end{cases}$$

Solving the family of the above equations, we obtain

Case I:

$$\begin{cases} A_0 = \frac{1}{3} \sqrt{6 m^2 + 6}, \\ B_1 = \frac{2}{3} \sqrt{3}, \\ \lambda = \frac{1}{3} \sqrt{6 m^2 + 6}, \\ A_1 = 0. \end{cases} \quad (4.18)$$

By using (4.17) and (4.18), we get

$$U_1(\xi) = -\frac{1}{3} \sqrt{6 m^2 + 6} + \frac{2\sqrt{3}}{3} \text{ns}(\xi, m), \quad (4.19)$$

and

$$V_1(\xi) = -\frac{2}{3} m^2 - \frac{2}{3} + \frac{2}{9} \sqrt{6 m^2 + 6} \sqrt{3} \text{ns}(\xi, m) - \frac{1}{2} \left(-\frac{1}{3} \sqrt{6 m^2 + 6} + \frac{2}{3} \sqrt{3} \text{ns}(\xi, m) \right)^2,$$

where $\xi = x - \lambda \frac{t^\alpha}{\alpha}$.

Case II:

$$\begin{cases} A_0 = \frac{1}{3} \sqrt{6 m^2 - 12}, \\ A_1 = \frac{2}{3} \sqrt{3}, \\ \lambda = \frac{1}{3} \sqrt{6 m^2 - 12}, \\ B_1 = 0. \end{cases} \quad (4.20)$$

From (4.17) and (4.20), we have

$$U_2(\xi) = \frac{1}{3} \sqrt{6 m^2 - 12} + \frac{2}{3} \sqrt{3} \text{cs}(\xi, m), \quad (4.21)$$

and

$$V_2(\xi) = -\frac{2}{3} m^2 + \frac{4}{3} - \frac{2}{9} \sqrt{6 m^2 - 12} \sqrt{3} \text{cs}(\xi, m) - \frac{1}{2} \left(\frac{1}{3} \sqrt{6 m^2 - 12} + \frac{2}{3} \sqrt{3} \text{cs}(\xi, m) \right)^2,$$

where $\xi = x - \lambda \frac{t^\alpha}{\alpha}$.

Case III:

$$\begin{cases} A_0 = \frac{1}{3} \sqrt{6 m^2 - 3}, \\ A_1 = \frac{1}{3} \sqrt{3}, \\ \lambda = \frac{1}{3} \sqrt{6 m^2 - 3}, \\ B_1 = \frac{1}{3} \sqrt{3}. \end{cases} \quad (4.22)$$

Using (4.17) and (4.22), we obtain

$$U_3(\xi) = \frac{1}{3} \sqrt{6 m^2 - 3} + \frac{1}{3} \sqrt{3} \text{cs}(\xi, m) + \frac{1}{3} \sqrt{3} \text{ns}(\xi, m), \quad (4.23)$$

and

$$\begin{aligned} V_3(\xi) = & \frac{2}{3} m^2 - \frac{1}{3} + \frac{1}{9} \sqrt{6 m^2 - 3} \sqrt{3} \text{cs}(\xi, m) + \frac{1}{9} \sqrt{6 m^2 - 3} \sqrt{3} \text{ns}(\xi, m) \\ & - \frac{1}{2} \left(\frac{1}{3} \sqrt{6 m^2 - 3} + \frac{1}{3} \sqrt{3} \text{cs}(\xi, m) + \frac{1}{3} \sqrt{3} \text{ns}(\xi, m) \right)^2, \end{aligned}$$

where $\xi = x - \lambda \frac{t^\alpha}{\alpha}$.

If $m = 0$, from (4.19), (4.21) and (4.23), we get new solitary wave solutions of (4.14),

$$\begin{aligned}
 U_4(\xi) &= -\frac{1}{3}\sqrt{6} + 2/3\sqrt{3}\csc(\xi), \\
 V_4(\xi) &= -\frac{2}{3} + \frac{2}{9}\sqrt{6}\sqrt{3}\csc(\xi) - \frac{1}{2}\left(-\frac{1}{3}\sqrt{6} + \frac{2}{3}\sqrt{3}\csc(\xi)\right)^2, \\
 U_5(\xi) &= \frac{2}{3}i\sqrt{3} + \frac{2}{3}\sqrt{3}\cot(\xi), \\
 V_5(\xi) &= \frac{4}{3} - \frac{4}{3}i\cot(\xi) - \frac{1}{2}\left(\frac{2}{3}i\sqrt{3} + \frac{2}{3}\sqrt{3}\cot(\xi)\right)^2, \\
 U_6(\xi) &= \frac{1}{3}i\sqrt{3} + \frac{1}{3}\sqrt{3}\cot(\xi) + \frac{1}{3}\sqrt{3}\csc(\xi), \\
 V_6(\xi) &= -\frac{1}{3} + \frac{1}{3}i\cot(\xi) + \frac{1}{3}i\csc(\xi) - \frac{1}{3}\left(\frac{1}{3}i\sqrt{3} + \frac{1}{3}\sqrt{3}\cot(\xi) + \frac{1}{3}\sqrt{3}\csc(\xi)\right)^2,
 \end{aligned} \tag{4.24}$$

where $\xi = x - \lambda \frac{t^\alpha}{\alpha}$.

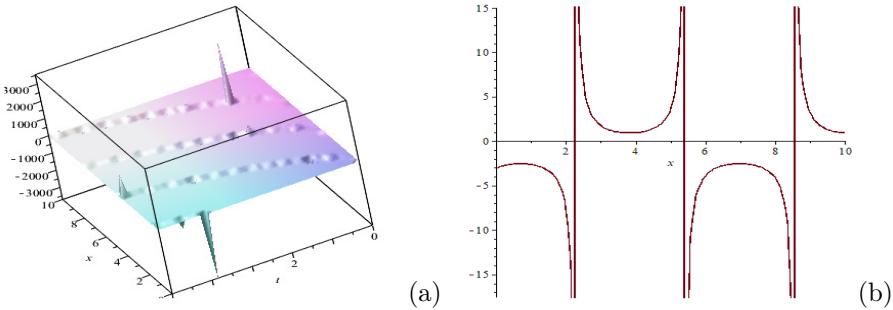


FIGURE 1. Profiles of solutions: (a) 3D solution of $u_4(x, t)$, (b) 2D solution of $u_4(x, y)$,

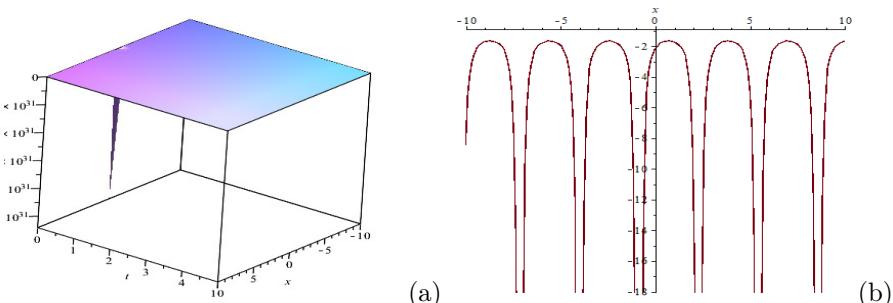


FIGURE 2. Profiles of solutions: (a) 3D solution of $v_4(x, y)$, (b) 2D solution of $v_4(x, y)$,

If $m = 1$, the following solutions of (4.14) are generated from (4.19), (4.21) and (4.24):

$$\begin{aligned}
 U_7(\xi) &= -\frac{2}{3}\sqrt{3} + \frac{2}{3}\sqrt{3}\coth(\xi), \\
 V_7(\xi) &= -\frac{4}{3} + \frac{4}{3}\coth(\xi) - \frac{1}{2}\left(-\frac{2}{3}\sqrt{3} + \frac{2}{3}\sqrt{3}\coth(\xi)\right)^2, \\
 U_8(\xi) &= \frac{1}{3}i\sqrt{6} + \frac{2}{3}\sqrt{3}\operatorname{csch}(\xi), \\
 V_8(\xi) &= -\frac{2}{3} + \frac{2}{9}i\sqrt{6}\sqrt{3}\operatorname{csch}(\xi) - \frac{1}{2}\left(-\frac{1}{3}i\sqrt{6} + \frac{2}{3}\sqrt{3}\operatorname{csch}(\xi)\right)^2, \\
 U_9(\xi) &= \frac{1}{3}\sqrt{3} + \frac{1}{3}\sqrt{3}\operatorname{csch}(\xi) + \frac{1}{3}\sqrt{3}\coth(\xi), \\
 V_9(\xi) &= \frac{1}{3} + \frac{1}{3}\operatorname{csch}(\xi) + \frac{1}{3}\coth(\xi) - \frac{1}{2}\left(\frac{1}{3}\sqrt{3} + \frac{1}{3}\sqrt{3}\operatorname{csch}(\xi) + \frac{1}{3}\sqrt{3}\coth(\xi)\right)^2,
 \end{aligned}$$

where $\xi = x - \lambda \frac{t^\alpha}{\alpha}$.

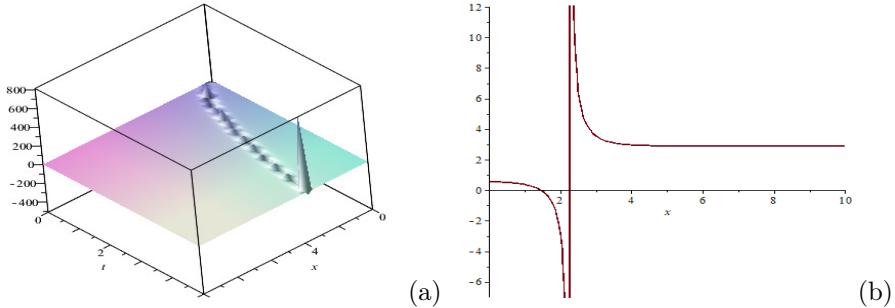


FIGURE 3. Profiles of solutions: (a) 3D solution of $u_7(x, y)$, (b) 2D solution of $u_7(x, y)$,

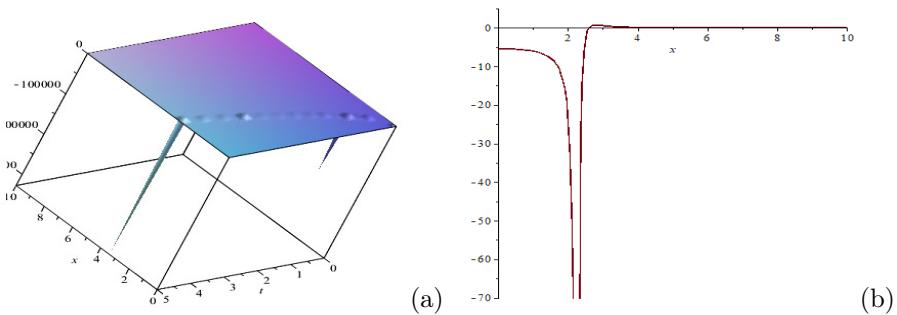


FIGURE 4. Profiles of solutions: (a) 3D solution of $v_7(x, y)$, (b) 2D solution of $v_7(x, y)$,

5. CONCLUSION

In this work, we have found new explicit solutions to the nonlinear fractional Wu-Zhang system with a time conformable derivative by using the sinh-Gordan equation method. A construction of various kinds of exact solutions for this system such as hyperbolic, exponential and trigonometric solutions has been carried out. These solutions might

be very useful in various branches of science. According to the shown results, we can conclude that this method is highly effective, simple to use and can be applied to solve many other nonlinear fractional systems in different domains of science. The method can be also extended to higher-dimensional nonlinear fractional differential equations involving new fractional derivatives.

REFERENCES

- [1] J.Singh, Devendra Kumar, A. Kılıçman. Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform. *Abstract and Applied Analysis*. Vol.2013, (2013).
- [2] K.Ait touchent, F.B.Belgacem. Nonlinear fractional partial differential equations systems solutions through a hybrid homotopy perturbation Sumudu transform method. *Nonlinear Studies*. vol.22, pp.591-600 (2015).
- [3] Sharma Dinkar, Prince Singh, Shubha Chauhan. Homotopy Perturbation Sumudu Transform Method with He's Polynomial for Solutions of Some Fractional Nonlinear Partial Differential Equations. *International Journal of Nonlinear Science*. vol.21, pp.91-97 (2016).
- [4] Eltayeb A.Youssif, Sara HM Hamed. Solution of nonlinear fractional differential equations using the homotopy perturbation Sumudu transform method. *Applied Mathematical Sciences*. vol.8, pp.2195-2210 (2014).
- [5] S. Momani, Z. Odibat. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method,. *Comput.Math. Appl.* pp.488-494 (2006).
- [6] R.K.Gazizov, A.A.Kasatkin, S.Yu.Lukashchuk. Symmetry properties of fractional diffusion equations. *Phys. Scr. T* 136. vol.2009, pp.014-016 (2009).
- [7] E.Buckwar, Y.Luchko. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. *J. Math. Anal.Appl.* vol.227, pp.81-97 (1998).
- [8] Mehmet. Yavuz. Novel solution methods for initial boundary value problems of fractional order with conformable differentiation. *An International Journal of Optimization and Control: Theories & Applications (IJOCTA)*. vol.8, pp.1-7 (2017).
- [9] Mehmet. Yavuz and Burcu. Yaskiran. Approximate-analytical solutions of cable equation using conformable fractional operator. *New Trends Math. Sci.* vol.5, pp.209-2019 (2017).
- [10] P. Ostalczyk, D. Sankowski, J. Nowakowski. New Numerical Techniques for Solving Fractional Partial Differential Equations in Conformable Sense. *Non-Integer Order Calculus and its Applications. Lecture Notes in Electrical Engineering*, vol.496. Springer, Cham, (2019).
- [11] Mehmet. Yavuz and Burcu. Yaskiran. Conformable Derivative Operator in Modelling Neuronal Dynamics. *Applications and Applied Mathematics: An International Journal (AAM)*, vol.13, pp.803-817, (2018).
- [12] Mehmet. Yavuz and Necati. Özdemir. On the solutions of fractional Cauchy problem featuring conformable derivative. *ITM Web of Conferences*. vol.22, pp.1045. EDP Sciences, (2018).
- [13] J.Manafian, M.Foroutan. Application of $\tan(\phi(\xi)/2)$ -expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity. *Optik-International Journal for Light and Electron Optics*. vol.127, pp.2040-2054 (2016).
- [14] S.Momani, and Z.Odibat. Homotopy perturbation method for nonlinear partial differential equations of fractional order. *Physics Letters A*. vol.365, pp.345-350 (2007).
- [15] Z. Hammouch, T. Mekkaoui. Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions. *International Journal of Applied Mathematical Research*, vol.1, pp.206-212 (2012).
- [16] Zhenya Yan. The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations. No.22, pp.275-284 (2003).
- [17] E.J.Parkes, and B.R.Duffy, and P.C.Abbott. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. (2002).
- [18] Zhu Jia-Min, and Ma Zheng-Yi. An extended Jacobian elliptic function method for the discrete mKdV lattice. *Chinese Physics*. vol.14, pp.17 (2005).
- [19] J. Losada and J. Nieto. Properties of a New Fractional Derivative without Singular Kernel. *Progress in Fractional Differentiation and Applications*. N.2, pp.87-92 (2015).
- [20] A. Atangana. On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation. *Applied Mathematics and Computation*. N.4, vol.22, pp.948-956 (2016).
- [21] K. Ait touchent, Z. Hammouch, T. Mekkaoui. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. *Applied Mathematics and Nonlinear Sciences*. pp.35-48 (2020).
- [22] H.Baskonus, Mehmet et al. Active control of a chaotic fractional order economic system. *Entropy*. N.8, vol.17, pp.5771-5783 (2015).

- [23] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh. A new definition of fractional derivative. *Journal of Computational and Applied Mathematics*. vol.264, pp.65-70 (2014).
- [24] Zhenya Yan. A sinh-Gordon equation expansion method to construct doubly periodic solutions for nonlinear differential equations. *Chaos, Solitons and Fractals*. N.2, vol.16, pp.291-297 (2003).
- [25] B. Kilic, E. Karatas, D. Baleanu, F. Tchier. On soliton solutions of the Wu-Zhang system. *Open Physics Journal*. vol.4, pp.76-80, (2016).
- [26] M. Eslami, and H. Rezazadeh. The first integral method for Wu-Zhang system with conformable time-fractional derivative. *Calcolo Journal*. vol.53, pp. 475-485, (2016).
- [27] T.Y. Wu, J.E. Zhang. On modeling nonlinear long waves, in: *Mathematics is for Solving Problems*. pp. 233–249, (1996).
- [28] M. Khater, D, Lu, R. Attia. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method. *AIP Advances*. vol.9, (2019).
- [29] K. Ait touchent, Z. Hammouch, T. Mekkaoui, C. Unlu. A Boiti-Leon Pimpinelli equations with time-conformable derivative. *International Journal of Optimization and Control: Theories and Applications (IJOCTA)*. vol.9, pp.95-101, (2019).

K. Ait Touchent: dr.aittouchent@gmail.com

Faculty of sciences and techniques Tangier, University Abdelmalek Essaadi, Morocco

J. El Amrani:

Faculty of sciences and techniques Tangier, University Abdelmalek Essaadi, Morocco

R. Bahloul:

Polydisciplinary faculty of Beni-Mellal, University Sultan Moulay Sliman, Morocco