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NEW OPTICAL SOLUTIONS FOR THE WU-ZHANG SYSTEM WITH
TIME FRACTIONAL CONFORMABLE DERIVATIVE

KAMAL AIT TOUCHENT, J. EL AMRANI, AND RACHID BAHLOUL

Abstract. In this paper, the sine-Gordon expansion method is implemented to
obtain new explicit solutions for the nonlinear Wu-Zhang system with a time-fractional
conformable derivative. The solutions constructed are plotted with the Maple software
and expressed by three types of functions: hyperbolic function solution, exponential
function solution and trigonometric function solution. The nonlinear fractional partial
differential equation is converted into an ordinary differential equation of integer
order. This method is used to solve a fractional Wu-Zhang system. These solutions
might be important and highly useful in various scientific fields. It is shown that this
method is very efficient for constructing exact solutions of nonlinear fractional partial
differential equations.

Реалiзовано метод розширення синус-Гордона для отримання нових явних
розв’язкiв для нелiнiйної системи Ву-Жанга iз дробове-конформною похiдною за
часом. Отриманi розв’язки будуються за допомогою програмного забезпечення
Maple i виражаються трьома типами функцiй: гiперболiчними функцiями, показ-
никовими функцiями та тригонометричними функцiями. Нелiнiйне диферен-
цiальне рiвняння з дробовими похiдними перетворюється в звичайне диферен-
цiальне рiвняння з цiлим порядком. Цей метод використовується для розв’язку
системи У-Чжан з дробовими похiдними. Рiшення можуть бути важливими i дуже
корисними у рiзних галузях науки. Показано, що це метод є дуже ефективним
для побудови точних розв’язкiв нелiнiйних рiвнянь з дробовими похiдними.

1. Introduction

Fractional calculus has attracted great interest and it has been considered as a powerful
tool to model many physical phenomena in various scientific areas such as physics, fluid
mechanics, chemistry, biology and mathematical physics. The same importance and
interest are given to fractional partial differential equations, due to their applications in
various branches of nonlinear sciences including mechanics, electrodynamics, elasticity and
other applications. Consequently, many authors tried to solve these equations through
several efficient techniques, such as homotopy perturbation Sumudu transform technique
[1, 2, 3, 4], \mathrm{t}\mathrm{a}\mathrm{n}(\phi (\xi )/2) - expansion method [13], Riccati equation expansion technique
[16], Lie symmetry method [6, 7], Adomian decomposition technique [5], homotopy
perturbation technique [14], generalized trigonometry functions [15], Jacobian elliptic
function technique [17] and extended Jacobian elliptic function technique [18].

In the current paper, we use the effective sine-Gordon expansion method to construct
a new exact solution for the Wu-Zhang system [25, 26, 27, 28] with a time-fractional
conformable derivative.

On the other hand, the following sinh-Gordon equation

\partial 2u

\partial x\partial t
= \alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}u, (1.1)

arises in several scientific fields, where \alpha is a constant.
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Using the wave transformation

u(x, t) = U(\xi ), \xi = \mu (x+ y  - \lambda t) ,

equation (1.1) becomes an ordinary differential equation as follows:

\partial 2U

\partial \xi 2
=  - \alpha 

\mu 2\lambda 
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}U, (1.2)

where \lambda and \mu are respectively the wave speed and wave number.
Now, multiplying both sides of (1.2) by the first order derivative of U , we get

\partial U

\partial \xi 
\times \partial 2U

\partial \xi 2
=  - \alpha 

\mu 2\lambda 
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}U \times \partial U

\partial \xi 
,

which implies
\partial U

\partial \xi 
\times \partial 2U

\partial \xi 2
=  - 2\alpha 

\mu 2\lambda 
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}

\biggl( 
1

2
U

\biggr) 
\times \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}

\biggl( 
1

2
U

\biggr) 
\times \partial U

\partial \xi 
, (1.3)

by integrating (1.3), we obtain\biggl( 
d

d\xi 

1

2
U

\biggr) 2

=  - \alpha 

\mu 2\lambda 
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}2

\biggl( 
1

2
U

\biggr) 
+ c, (1.4)

where c is a constant.
Taking into consideration

c = 0, \alpha =  - \mu 2\lambda ,
1

2
U = w,

equation (1.4) becomes
dw(\xi )

d\xi 
= \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}w(\xi ).

The Jacobi elliptic function solutions are obtained by converting equation (1.2) into

d2w

d\xi 2
=

1

2
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h} 2w, (1.5)

with the assumptions U = 2w and \alpha =  - \mu 2\lambda . Equation (1.5) takes the form:\biggl( 
dw

d\xi 

\biggr) 2

= \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}2 w + c, (1.6)

which can be used in the implemented method, where c is a constant of integration.
Therefore, the solutions of (1.6) are as follows:

\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h} [w(\xi )] = cs(\xi ;m), (1.7)

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h} [w(\xi )] = ns(\xi ;m), (1.8)
where m is a Jacobian elliptic functions module.

cs(\xi ;m) =
cn(\xi ;m)

sn(\xi ;m)
, ns(\xi ;m) =

1

sn(\xi ;m)
,

with the properties
dcs(\xi ;m)

d\xi 
=  - ns(\xi ;m)ds(\xi ;m),

dns(\xi ;m)

d\xi 
=  - cs(\xi ;m)ds(\xi ;m).

Inserting (1.7) and (1.8) into (1.6) shows that the constant c must satisfy

c = 1 - m2. (1.9)

The rest of this article is arranged as follows. In Section 2, we provide some fundamental
properties of the fractional conformable derivative. Section 3, is devoted to the main
steps of the sinh-Gordan expansion method. In Section 4, we apply this technique to
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construct new explicit solutions of the fractional Wu-Zhang system with conformable
derivative. Finally, some concluding remarks are given in Section 5.

2. Conformable derivative properties

. There are various definitions of fractional derivative [19, 20, 21, 22, 29]. In the last years,
the new definition called fractional conformable derivative is proposed by Khalil and all.
[23]. In this section, we give its properties.

Definition 2.1. The conformable derivative of order \alpha for a function f : [0,\infty ) \rightarrow R is
defined as

T\alpha (f)(t) = \mathrm{l}\mathrm{i}\mathrm{m}
\epsilon \rightarrow 0

f
\bigl( 
t+ \epsilon t1 - \alpha 

\bigr) 
 - f(t)

\epsilon 
,

where t > 0, \alpha \in (0, 1).

Now, we provide some properties of this novel fractional derivative:
\cdot T\alpha (\gamma f + \beta g) = \gamma T\alpha (f) + \beta T\alpha (g) for all real constant \gamma and \beta ,
\cdot T\alpha (fg) = fT\alpha (g) + gT\alpha (f),
\cdot T\alpha (tp) = \alpha t\alpha  - p for all \alpha ,
\cdot T\alpha 

\Bigl( 
g
f

\Bigr) 
= fT\alpha (g) - gT\alpha (f)

f2 ,
\cdot T\alpha (C) = 0, where C is a constant.

Moreover, the differentiability of f implies that T\alpha (f) = t1 - \alpha df
dt (t).

Theorem 2.2. Suppose that f : [0,\infty ) is differentiable and conformable differerentiable
of order \alpha and the function g is also differentiable. Then

T\alpha (fog) = t1 - \alpha g
\prime 
(t)f

\prime 
(g(t)).

3. Description of the method

The sinh-Gordon equation expansion technique [24], is highly efficient for finding new
explicit solutions of engineering and physical fractional problems appearing in various
scientific areas. This method is based on equation (1.5) or equation (1.6) and it will be
described as follows.

Consider the following equation with the fractional time-conformable derivative:

\bfN 
\bigl( 
u, T\alpha 

t u, T
\alpha 
x u, T

\alpha 
y u, . . .

\bigr) 
= 0. (3.10)

Using the transformation

u(x, y, t) = U(\xi ), \xi = \mu 

\biggl( 
x\alpha 

\alpha 
+

y\alpha 

\alpha 
 - \lambda 

t\alpha 

\alpha 

\biggr) 
,

equation (3.10) is transformed into an ordinary differential equation,

\bfQ 
\Bigl( 
U,U

\prime 
, \mu U

\prime 
, - \lambda U

\prime 
, U

\prime \prime 
, \mu 2U

\prime \prime 
, . . .

\Bigr) 
= 0. (3.11)

Now, we suppose that a solution for (3.11) takes the following form:

U(w(\xi )) = A0 +

n\sum 
i=1

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}i - 1 w [Ai \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}w +Bi \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}w] , (3.12)

where w = w(\xi ) satisfies (1.5) or (1.6) and (1.9), Ai(i = 0, 1, 2, . . . , n), Bi(i = 0, 1, 2, . . . , n),
are constants to be found later.

We apply the balance principle by taking nonlinear terms and the higher derivative in
equation (3.11) to find the value of the integer n.

Now, put the coefficients of \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}i w \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}j w that have the same power to be zero,
to obtain a system of equations including unknowns \mu , \lambda ,Ai(i = 0, 1, 2, . . . , n), Bj(j =
0, 1, 2, . . . , n).
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Finally, we solve the obtained system by using the Maple software, then we substitute
A0, A1, B1, . . . , An, Bn, \mu , \lambda in (3.12).

Remark 3.1. . If m \rightarrow 1,

cs(\xi ,m) \rightarrow csch(\xi ), ns(\xi ,m) \rightarrow \mathrm{c}\mathrm{o}\mathrm{t}\mathrm{h}(\xi ),

If m \rightarrow 0,

cs(\xi ,m) \rightarrow cot(\xi ), ns(\xi ,m) \rightarrow csc(\xi ).

4. Implementation of the method

Consider the nonlinear fractional Wu-Zhang system\biggl\{ 
T\alpha 
t u =  - uux  - vx,

T\alpha 
t v =  - vux  - uvx  - 1

3uxxx,
(4.13)

where \alpha \in (0, 1), u = u(x, t) is the surface velocity of water and v = v(x, t) is the water
elevation. The following wave transformation\left\{   

u(x, t) = U(\xi ),
v(x, t) = V (\xi ),

\xi = x - \lambda t\alpha 

\alpha ,

where \lambda is a constant, reduces system (4.13) to the following system of ODEs:\left\{                     

T\alpha 
t u =  - \lambda U

\prime 
,

uux = UU
\prime 
,

Vx = V
\prime 
,

T\alpha 
t v =  - \lambda V

\prime 
,

vux = V U
\prime 
,

uvx = UV
\prime 
.

1
3uxxx = 1

3U
\prime \prime \prime 
.

Then, we obtain the new system as follows:\biggl\{ 
\lambda U

\prime 
= UU

\prime 
+ V

\prime 
,

\lambda V
\prime 
= V U

\prime 
+ UV

\prime 
+ 1

3U
\prime \prime \prime 
.

(4.14)

By taking the integration constant to be zero, we integrate the first equation in system
(4.14) and obtain

V = \lambda U  - U2

2
. (4.15)

Inserting equation (4.15) into the second equation of system (4.14), we have the following
nonlinear differential equation

2U
\prime \prime 
 - 3U3 + 9\lambda U2  - 6\lambda 2u = 0. (4.16)

Now, balancing the terms U
\prime \prime 

and U3, we get n = 1. Therefore, the solutions of equation
(4.16) take the following form:

U(\xi ) = A0 +A1 \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h} (w (\xi )) +B1 \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h} (w (\xi )) . (4.17)
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Substituting (4.17) into (4.16), we get the following family of equations for \lambda ,A0, A1

and B1:\left\{                   

eq1 =  - 9\itA 1
2\itB 1  - 3\itB 1

3 + 4\itB 1 ,
eq2 =  - 3\itA 1

3  - 9\itA 1 \itB 1
2 + 4\itA 1 ,

eq3 =  - 9\itA 0 \itA 1
2  - 9\itA 0 \itB 1

2 + 9\itA 1
2\lambda + 9\itB 1

2\lambda ,
eq4 =  - 18\itA 0 \itA 1 \itB 1 + 18\itA 1 \itB 1 \lambda ,
eq5 =  - 9\itA 0

2\itB 1 + 18\itA 0 \itB 1 \lambda + 9\itA 1
2\itB 1  - 6\itB 1 \lambda 2 + 2\itB 1 c - 4\itB 1 ,

eq6 =  - 9\itA 0
2\itA 1 + 18\itA 0 \itA 1 \lambda + 3\itA 1

3  - 6\itA 1 \lambda 2 + 2\itA 1 c - 2\itA 1 ,
eq7 =  - 3\itA 0

3 + 9\lambda \itA 0
2 + 9\itA 0 \itA 1

2  - 6\lambda 2\itA 0  - 9\itA 1
2\lambda .

Solving the family of the above equations, we obtain
Case I: \biggl\{ 

A0 = 1
3

\surd 
6m2 + 6, \lambda = 1

3

\surd 
6m2 + 6,

B1 = 2
3

\surd 
3, A1 = 0.

(4.18)

By using (4.17) and (4.18), we get

U1(\xi ) =  - 1

3

\sqrt{} 
6m2 + 6 +

2
\surd 
3

3
ns (\xi ,m) , (4.19)

and

V1(\xi ) =  - 2

3
m2 - 2

3
+

2

9

\sqrt{} 
6m2 + 6

\surd 
3\itn \its (\xi ,m) - 1

2

\biggl( 
 - 1

3

\sqrt{} 
6m2 + 6 +

2

3

\surd 
3\itn \its (\xi ,m)

\biggr) 2

,

where \xi = x - \lambda t\alpha 

\alpha .

Case II: \biggl\{ 
A0 = 1

3

\surd 
6m2  - 12, \lambda = 1

3

\surd 
6m2  - 12,

A1 = 2
3

\surd 
3, B1 = 0.

(4.20)

From (4.17) and (4.20), we have

U2(\xi ) =
1

3

\sqrt{} 
6m2  - 12 +

2

3

\surd 
3cs (\xi ,m) , (4.21)

and

V2(\xi ) =  - 2

3
m2 +

4

3
 - 2

9

\sqrt{} 
6m2  - 12

\surd 
3cs (\xi ,m) - 1

2

\biggl( 
1

3

\sqrt{} 
6m2  - 12 +

2

3

\surd 
3cs (\xi ,m)

\biggr) 2

,

where \xi = x - \lambda t\alpha 

\alpha .

Case III: \biggl\{ 
A0 = 1

3

\surd 
6m2  - 3, \lambda = 1

3

\surd 
6m2  - 3,

A1 = 1
3

\surd 
3, B1 = 1

3

\surd 
3.

(4.22)

Using (4.17) and (4.22), we obtain

U3(\xi ) =
1

3

\sqrt{} 
6m2  - 3 +

1

3

\surd 
3cs (\xi ,m) +

1

3

\surd 
3ns (\xi ,m) , (4.23)

and

V3(\xi ) =
2

3
m2  - 1

3
+

1

9

\sqrt{} 
6m2  - 3

\surd 
3cs (\xi ,m) +

1

9

\sqrt{} 
6m2  - 3

\surd 
3ns (\xi ,m)

 - 1

2

\biggl( 
1

3

\sqrt{} 
6m2  - 3 +

1

3

\surd 
3cs (\xi ,m) +

2

3

\surd 
3ns (\xi ,m)

\biggr) 2

,

where \xi = x - \lambda t\alpha 

\alpha .



130 K. AIT TOUCHENT, J. EL AMRANI, AND R. BAHLOUL

If m = 0, from (4.19), (4.21) and (4.23), we get new solitary wave solutions of (4.14),

U4(\xi ) =  - 1

3

\surd 
6 + 2/3

\surd 
3 \mathrm{c}\mathrm{s}\mathrm{c} (\xi ) ,

V4(\xi ) =  - 2

3
+

2

9

\surd 
6
\surd 
3 \mathrm{c}\mathrm{s}\mathrm{c} (\xi ) - 1

2

\biggl( 
 - 1

3

\surd 
6 +

2

3

\surd 
3 \mathrm{c}\mathrm{s}\mathrm{c} (\xi )

\biggr) 2

, (4.24)

U5(\xi ) =
2

3
i
\surd 
3 +

2

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t} (\xi ) ,

V5(\xi ) =
4

3
 - 4

3
i \mathrm{c}\mathrm{o}\mathrm{t} (\xi ) - 1

2

\biggl( 
2

3
i
\surd 
3 +

2

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t} (\xi )

\biggr) 2

,

U6(\xi ) =
1

3
i
\surd 
3 +

1

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t} (\xi ) +

1

3

\surd 
3 \mathrm{c}\mathrm{s}\mathrm{c} (\xi ) ,

V6(\xi ) =  - 1

3
+

1

3
i \mathrm{c}\mathrm{o}\mathrm{t} (\xi ) +

1

3
i \mathrm{c}\mathrm{s}\mathrm{c} (\xi ) - 1

3

\biggl( 
1

3
i
\surd 
3 +

1

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t} (\xi ) +

1

3

\surd 
3 \mathrm{c}\mathrm{s}\mathrm{c} (\xi )

\biggr) 2

,

where \xi = x - \lambda t\alpha 

\alpha .

(a) (b)

Figure 1. Profiles of solutions: (a) 3D solution of u4(x, t), (b) 2D
solution of u4(x, y),

(a) (b)

Figure 2. Profiles of solutions: (a) 3D solution of v4(x, y), (b) 2D
solution of v4(x, y),
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If m = 1, the following solutions of (4.14) are generated from (4.19), (4.21) and (4.24):

U7(\xi ) =  - 2

3

\surd 
3 +

2

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t}\mathrm{h} (\xi ) ,

V7(\xi ) =  - 4

3
+

4

3
\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{h} (\xi ) - 1

2

\biggl( 
 - 2

3

\surd 
3 +

2

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t}\mathrm{h} (\xi )

\biggr) 2

,

U8(\xi ) =
1

3
i
\surd 
6 +

2

3

\surd 
3\itc \its \itc \ith (\xi ) ,

V8(\xi ) =  - 2

3
+

2

9
i
\surd 
6
\surd 
3\itc \its \itc \ith (\xi ) - 1

2

\biggl( 
 - 1

3
i
\surd 
6 +

2

3

\surd 
3\itc \its \itc \ith (\xi )

\biggr) 2

,

U9(\xi ) =
1

3

\surd 
3 +

1

3

\surd 
3\itc \its \itc \ith (\xi ) +

1

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t}\mathrm{h} (\xi ) ,

V9(\xi ) =
1

3
+

1

3
\itc \its \itc \ith (\xi ) +

1

3
\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{h} (\xi ) - 1

2

\biggl( 
1

3

\surd 
3 +

1

3

\surd 
3\itc \its \itc \ith (\xi ) +

1

3

\surd 
3 \mathrm{c}\mathrm{o}\mathrm{t}\mathrm{h} (\xi )

\biggr) 2

,

where \xi = x - \lambda t\alpha 

\alpha .

(a) (b)

Figure 3. Profiles of solutions: (a) 3D solution of u7(x, y), (b) 2D
solution of u7(x, y),

(a) (b)

Figure 4. Profiles of solutions: (a) 3D solution of v7(x, y), (b) 2D
solution of v7(x, y),

5. Conclusion

In this work, we have found new explicit solutions to the nonlinear fractional Wu-Zhang
system with a time conformable derivative by using the sinh-Gordan equation method.
A construction of various kinds of exact solutions for this system such as hyperbolic,
exponential and trigonometric solutions has been carried out. These solutions might
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be very useful in various branches of science. According to the shown results, we can
conclude that this method is highly effective, simple to use and can be applied to solve
many other nonlinear fractional systems in different domains of science. The method
can be also extended to higher-dimensional nonlinear fractional differential equations
involving new fractional derivatives.
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