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NEW OPTICAL SOLUTIONS FOR THE WU-ZHANG SYSTEM WITH
TIME FRACTIONAL CONFORMABLE DERIVATIVE

KAMAL AIT TOUCHENT, J. EL AMRANI, AND RACHID BAHLOUL

ABsTRACT. In this paper, the sine-Gordon expansion method is implemented to
obtain new explicit solutions for the nonlinear Wu-Zhang system with a time-fractional
conformable derivative. The solutions constructed are plotted with the Maple software
and expressed by three types of functions: hyperbolic function solution, exponential
function solution and trigonometric function solution. The nonlinear fractional partial
differential equation is converted into an ordinary differential equation of integer
order. This method is used to solve a fractional Wu-Zhang system. These solutions
might be important and highly useful in various scientific fields. It is shown that this
method is very efficient for constructing exact solutions of nonlinear fractional partial
differential equations.

PeastizoBano meroj; posiiupenns: cunyc-l'opfoHa /it OTpUMaHHS HOBUX SBHUX
po3B’s3KiB A1 HeminiiHOI cucremu By-2Kamnra i3 1po6oBe-KOH(MOPMHOIO IOXIIHOO 33
qacoM. OTpuMani po3s’sazku GyLyIOThCA 3a JTOMOMOIOI0 IPOrPAMHOrO 3abe3neYeH s
Maple i BupaskaroThCsl TPhOMa THIIAME (QYHKINH: rinep6ositHuMu (YHKIHSIMI, TOKa3-
HUKOBUMHU (DYHKI[isIMU Ta TpUroHoMeTpudHuMu GyHKIisimu. Hesiniline nudepen-
miasibHe PIBHAHHS 3 JPOOOBUMH IHOXIHUME IIE€PETBOPIOETHCS B 3BUYaiHE nudepeH-
miaJibHe PIBHSIHHSA 3 IIJIUM HOPsIKOM. Lleit MeTo/1 BUKOPUCTOBYETHCS JIJIsE PO3B’SI3KY
cuctemu Y-Yxkan 3 1poboBuMu noxiguumu. PimeHHs MOXKYTh Oy TH BaXKJIMBUMU 1 JIy»Ke
KOPHUCHUMHM y PI3HHUX rajy3six HaykKu. IlokaszaHo, 10 1e MeTo € ay2Ke e(DeKTUBHUM
IUIst TOOYIOBU TOYHUX PO3B’SI3KIB HEJIHIAHUX PIBHSHB 3 JIPOOOBUMHU ITOXIJHUMH.

1. INTRODUCTION

Fractional calculus has attracted great interest and it has been considered as a powerful
tool to model many physical phenomena in various scientific areas such as physics, fluid
mechanics, chemistry, biology and mathematical physics. The same importance and
interest are given to fractional partial differential equations, due to their applications in
various branches of nonlinear sciences including mechanics, electrodynamics, elasticity and
other applications. Consequently, many authors tried to solve these equations through
several efficient techniques, such as homotopy perturbation Sumudu transform technique
[1, 2, 3, 4], tan(¢(€)/2)— expansion method [13], Riccati equation expansion technique
[16], Lie symmetry method [6, 7], Adomian decomposition technique [5], homotopy
perturbation technique [14], generalized trigonometry functions [15], Jacobian elliptic
function technique [17] and extended Jacobian elliptic function technique [18].

In the current paper, we use the effective sine-Gordon expansion method to construct
a new exact solution for the Wu-Zhang system [25, 26, 27, 28] with a time-fractional
conformable derivative.

On the other hand, the following sinh-Gordon equation

0%u
oxOt

arises in several scientific fields, where « is a constant.

= asinhu, (1.1)
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Using the wave transformation
u(x,t) =U(E), E=plz+y—A),

equation (1.1) becomes an ordinary differential equation as follows:

0*U a
8762 = _E SlnhU7 (12)
where X and p are respectively the wave speed and wave number.
Now, multiplying both sides of (1.2) by the first order derivative of U, we get

a—U X —82U = —LsinhU X a—U
I TSI TEDY o¢’
which implies
ou  0*U 2a 1 1 ou
875 X 8752 = —m Slnh <2U> X COSh <2U> X 8757 (13)
by integrating (1.3), we obtain
d1.\° o , (1
—= = ———sinh” | = 14
(de37) = —xome (50) +o (14
where c¢ is a constant.
Taking into consideration
1
c=0, a=—p3\, §U:w,
equation (1.4) becomes
d
1225) = sinh w(§).
The Jacobi elliptic function solutions are obtained by converting equation (1.2) into
w1,
@ =3 sinh 2w, (1.5)
with the assumptions U = 2w and a = —p?\. Equation (1.5) takes the form:
dw )\ 2
(d?) =sinh*w + ¢, (1.6)

which can be used in the implemented method, where c is a constant of integration.
Therefore, the solutions of (1.6) are as follows:

sink [w(€)] = es(&m), (1.7)
cosh [w(£)] = ns(§;m), (1.8)
where m is a Jacobian elliptic functions module.
; 1
cs(§sm) = m7 ns(§m) = M,
with the properties
A sgmyds(em), PIE e mds(sm).

Inserting (1.7) and (1.8) into (1.6) shows that the constant ¢ must satisfy
c=1-—m? (1.9)
The rest of this article is arranged as follows. In Section 2, we provide some fundamental

properties of the fractional conformable derivative. Section 3, is devoted to the main
steps of the sinh-Gordan expansion method. In Section 4, we apply this technique to
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construct new explicit solutions of the fractional Wu-Zhang system with conformable
derivative. Finally, some concluding remarks are given in Section 5.

2. CONFORMABLE DERIVATIVE PROPERTIES

. There are various definitions of fractional derivative [19, 20, 21, 22, 29]. In the last years,
the new definition called fractional conformable derivative is proposed by Khalil and all.
[23]. In this section, we give its properties.

Definition 2.1. The conformable derivative of order « for a function f : [0,00) — R is

defined as L
7,(1)(0) = g LD 0,

e—0 €

where t > 0, € (0,1).

Now, we provide some properties of this novel fractional derivative:
T, (vf + ﬁg) =T (f) + BTa(g) for all real constant v and 3,
9) = fTa(g) + 9Tu(f),
P) = ozto‘ P for all «,

(f

(t

(g) _ [Ta(9)=9Ta(f)
f f2 )

- T,(C) = 0, where C is a constant.

. . e . . —ad
Moreover, the differentiability of f implies that T, (f) = t! O‘d—{(t).

- T,
- T,
To

Theorem 2.2. Suppose that f : [0,00) is differentiable and conformable differerentiable
of order a and the function g is also differentiable. Then

To (fog) = t'=%g ()f (9(1)).
3. DESCRIPTION OF THE METHOD

The sinh-Gordon equation expansion technique [24], is highly efficient for finding new
explicit solutions of engineering and physical fractional problems appearing in various
scientific areas. This method is based on equation (1.5) or equation (1.6) and it will be
described as follows.

Consider the following equation with the fractional time-conformable derivative:

N (u, Tfu, Ty u, Ty, . ) =0. (3.10)
Using the transformation

u(m,y,t):U(f), £:M<J"a+ya_ ta)a

equation (3.10) is transformed into an ordinary differential equation,

Q (U, UL U -\ U 2 ) —0. (3.11)
Now, we suppose that a solution for (3.11) takes the following form:
U(w(€)) = Ao + Z cosh’ ™ w [A; sinhw + B; coshw] (3.12)
i=1

where w = w(&) satisfies (1.5) or (1.6) and (1.9), 4;(: =0,1,2,...,n),B;(i=0,1,2,...,n),
are constants to be found later.

We apply the balance principle by taking nonlinear terms and the higher derivative in
equation (3.11) to find the value of the integer n.

Now, put the coefficients of sinh’w cosh? w that have the same power to be zero,
to obtain a system of equations including unknowns p, A, 4;(: = 0,1,2,...,n),B;(j =
0,1,2,...,n).
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Finally, we solve the obtained system by using the Maple software, then we substitute
A()7 Al, Bl, ey An, Bn,,u, Ain (312)

Remark 3.1. . If m — 1,
es(&,m) — esch(§), ns(§, m) — coth(§),

If m — 0,

cs(&, m) — cot(§), ns(&, m) — csc(§).

4. IMPLEMENTATION OF THE METHOD
Consider the nonlinear fractional Wu-Zhang system

THu = —uuy — vy,
_ 1
Tv = —vuy — uy — Ugza,

(4.13)

where o € (0,1), u = u(z,t) is the surface velocity of water and v = v(z,t) is the water
elevation. The following wave transformation

u(z, t) = U(E),
o(et) = V(¢).
f =T — A%a

where A is a constant, reduces system (4.13) to the following system of ODEs:

Tou=—\U,
Uy = UU/,
Vo=V,
Tov = -V,
VUgy = VU/,
UV, = uv'.
%uwzz = %UW

Then, we obtain the new system as follows:

{AU =UU +V/, (4.14)

AV =VvU +UV + U7,
By taking the integration constant to be zero, we integrate the first equation in system
(4.14) and obtain
U2
Inserting equation (4.15) into the second equation of system (4.14), we have the following
nonlinear differential equation
2U" — 3U° + 9AU? — 6X%u = 0. (4.16)

Now, balancing the terms U " and U3, we get n = 1. Therefore, the solutions of equation
(4.16) take the following form:

U(&) = Ag + Ay sinh (w (€)) + By cosh (w (§)) . (4.17)
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Substituting (4.17) into (4.16), we get the following family of equations for A, Ag, A;

and Bj:

eql =—94,*°B; —3B;*+4By,

€q2:—3A13—9A1 3124—41417

eq3=—-9A0 A2 =94y B;2+ 94,2\ +9B,2),

€q4:—18A0A1 B] +18A1 B] A

eqb=—94,°B; +18A49B; AN+ 9A4,°B, —6B, \2+2B,c— 4By,
eq6=—9A02A1 —|—18A0 A] A+3A13—6A1 A2+2A1 C—2A1,
eqT =342 +9NA2+94, 4,2 —6X24, — 94,2\

Solving the family of the above equations, we obtain
Case I:

Ag=3V6m?>+6, A=16m?+6,
By = 2/3, A =0.

By using (4.17) and (4.18), we get

Ui(§) = —% 6m2+ 6+ ?ns(ﬁ,m),

2 2 2
,,m2,7+7\/W\/§n8(5,m

)1
3 3 9 2

where £ =z — )\%.

Case II:

(4.18)

(4.19)

2
(5 VEme 6+ 2 vansem)

Ag=3V6m?>—12,  A=1V6m?-12, (4.20)
A = %\/g, B, =0. .
From (4.17) and (4.20), we have
1
=§\/6m2—12+§\/§cs(§,m), (4.21)
2 1 2
—3m \/ 2 —12v3cs (&,m ) < V6m2 —12 + \fCS (&, )> )

where £ =z — )\%.

Case III:

Ag=3V6m2 -3, A=1V6m?-3,
A =13, B =1 V3.

Using (4.17) and (4.22), we obtain

and

:%M+%\/§cs(§,m)+%\/§n8(&m)7

Va(€) = 2 m? ff+ chs (&m é\/6m2—3\/§ns ,m

3

2
_% <3m+3\/§cs(§,m)+3\/§ns(f»m)> :

«@
where £ = 2 — AL,
«

(4.22)

(4.23)
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If m =0, from (4.19), (4.21) and (4.23), we get new solitary wave solutions of (4.14),

Us(§) = —%\/6+2/3\/§csc(£),
2 2 ?
Va(§) = —§+f\@\/§csc( )—f (—\[—F V3esc (¢ )> , (4.24)
Us(€) = 2ivB + 2 V3eot €),
%@zg—gmm@—i(iwﬂg¢%m@0,

Us(€) = 5 iV + 5 VBeot (€) + 5 Viese (©).

Vﬁ(ﬁ):f%Jr%icot(f)Jr%icsc(f) < V34 = \/gcot() ;\/gcsc(g)),

where £ =z — )\%.

(a) (b)

FIGURE 1. Profiles of solutions: (a) 3D solution of u4(z,t), (b) 2D
solution of u4(z,y),

(a)

FIGURE 2. Profiles of solutions: (a) 3D solution of vs(x,y), (b) 2D
solution of vy(z,y),

(b)
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If m = 1, the following solutions of (4.14) are generated from (4.19), (4.21) and (4.24):
2 2
Ur(€) = =3 V3 + 5 V3coth (¢),

2
Vi(€) = —% + g coth (€) — % (—g V3+ g \/§coth(§)> ,

Us(€) = %i\/ﬂ % V3esch (€),

V() = —; + gix/gx/gcsch &) — % (—% iv6 + ; V3esch (5)) )

Uy(€) = % V3 4+ % V3esch (€) + é V3 coth (),

2
Vo(€) = % + % esch (§) + = coth (§) — % (% V3 4+ % V3esch (€) + % V3 coth (f)) ,

where £ =z — )\%.

FIGURE 3. Profiles of solutions: (a) 3D solution of uz(x,y), (b) 2D
solution of uz(z,y),

()

FIGURE 4. Profiles of solutions: (a) 3D solution of vz(x,y), (b) 2D
solution of vy (z,y),

5. CONCLUSION

In this work, we have found new explicit solutions to the nonlinear fractional Wu-Zhang
system with a time conformable derivative by using the sinh-Gordan equation method.
A construction of various kinds of exact solutions for this system such as hyperbolic,
exponential and trigonometric solutions has been carried out. These solutions might
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be very useful in various branches of science. According to the shown results, we can
conclude that this method is highly effective, simple to use and can be applied to solve
many other nonlinear fractional systems in different domains of science. The method
can be also extended to higher-dimensional nonlinear fractional differential equations
involving new fractional derivatives.
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