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ON REEB GRAPHS INDUCED FROM SMOOTH FUNCTIONS ON
3-DIMENSIONAL CLOSED MANIFOLDS WHICH MAY NOT BE

ORIENTABLE

NAOKI KITAZAWA

Abstract. The Reeb space of a smooth function is a topological and combinatorial
object. It is important in understanding the manifold. It is a graph defined as the
quotient space of the manifold where the equivalence relation is as follows: two points
in the manifold are equivalent if and only if they are in a same connected component
of a level set. If the function is a Morse(-Bott) function for example, then this is the
graph (Reeb graph) whose vertex set is the set of all points containing some singular
points in the corresponding connected component of the level set.

The author previously constructed explicit smooth functions on suitable
3-dimensional closed and orientable manifolds whose Reeb graphs are isomorphic
to prescribed graphs and whose preimages are of prescribed types. The present
paper concerns a variant in the case where the 3-dimensional manifolds may not be
non-orientable.

Простiр Реба гладкої функцiї є топологiчним i комбiнаторним об’єктом. Вiн
грає важливу роль для розумiння многовиду. Вiн є графом, який визначається
як фактор-простiр многовиду, де вiдношення еквiвалентностi таке: двi точки
многовида еквiвалентнi тодi i тiльки тодi, коли вони знаходяться в одному i тому ж
зв’язному компонентi поверхнi рiвня. Якщо функцiя є функцiєю Морса(-Ботта),
тодi це є графом (графом Реба), множина вершин якого є множиною всiх точок,
що мiстять певнi особливi точки у вiдповiдних зв’язних компонентах множини
рiвнiв.

Ранiше автор побудував явнi гладкi функцiї на вiдповiдних 3 - вимiрних
замкнутих i орiєнтованих многовидах, графи Реба яких iзоморфнi заданим
графам i прообрази яких мають заданi типи. У цiй статтi розглядається варiант
в випадку, коли 3-мiрнi многовиди можуть не бути неорiєнтованими.
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1. Introduction

1.1. Reeb spaces, Reeb graphs and Main Problem. The Reeb space of a smooth
map c is defined as follows.

For a smooth map c : X \rightarrow Y , we can define an equivalence relation \sim c on X as follows:
x1\sim cx2 holds if and only if they are in a same connected component of a preimage c - 1(y).

Definition 1. The quotient space Wc := X/\sim c is the Reeb space of c.

Hereafter, qc : X \rightarrow Wc denotes the quotient space. We can define a map \=c uniquely
by the relation c = \=c \circ qc. For a manifold and a polyhedron X, its dimension is uniquely
defined and let \mathrm{d}\mathrm{i}\mathrm{m}X denote this. For a smooth manifold X, TpX denotes the tangent
space at p. A singular point of a smooth map c : X \rightarrow Y is a point p \in X where the rank
of the differential dcp : TpX \rightarrow Tc(p)Y is smaller than \mathrm{m}\mathrm{i}\mathrm{n}\{ \mathrm{d}\mathrm{i}\mathrm{m}X,\mathrm{d}\mathrm{i}\mathrm{m}Y \} . The singular
set of c is the set of all singular points of c. For a smooth map c, the singular value is
a point c(p) which is a value at some singular point p. A regular value of the map is a
point which is not a singular value in Y .

The Reeb space of a smooth function f which is not so wild is a graph. Reeb spaces
are graphs for smooth functions on compact manifolds with finitely many singular values
for example ([18]). In the present paper we only concentrate on such smooth functions
essentially. One of pioneering papers on Reeb spaces is [15] for example. They have been
fundamental and important topological objects and tools in algebraic topological studies
and differential topological ones on differentiable manifolds. They inherit topological
information such as homology groups and cohomology rings in several cases. See author’s
works [7, 8, 9, 6, 4, 5], for example, for related expositions. They essentially concentrate
on fold maps such that preimages of regular values are disjoint unions of spheres. Fold
maps are higher dimensional variants of so-called Morse functions and the definition of
a fold map is introduced in the next section. We present another important problem,
which is our Main Problem. Before presenting this, we introduce several terminologies
and explanations on graphs. A graph G := (V,E) is an object consisting of the vertex set
V and the edge set E. The edge set is a set consisting of a pair of a subset of V consisting
of exactly two elements in V and an integer. It is also a so-called multigraph with no loops.
A vertex of the graph is an element of the vertex set. An edge of the graph is an element
of the edge set. If V and E are finite sets, then G is called a finite graph. If the following
condition is satisfied, then the graph is said to be connected: for any two distinct vertices
v1, v2 \in V , there exists a sequence \{ vj\} 

lv1,v2
j=1 \subset V of length lv1,v2 satisfying the following

conditions for some integer lv1,v2 > 1:

\circ vj \not = vj+1 for 1 \leq j \leq lv1,v2  - 1.
\circ For the two-element set Vj := \{ vj , vj+1\} , there exists an integer i(j) and
(Vj , i(j)) \in E for 1 \leq j \leq lv1,v2  - 1.

By regarding each edge as a closed interval and each vertex a point in a natural way,
we can regard a graph as a topological space. For a connected graph, the topological
space is connected and arcwise connected. For a finite graph, it is regarded as a so-called
1-dimensional finite simplicial complex.

Hereafter, we only consider finite and connected graphs as graphs essentially. We can
regard such graphs as 1-dimensional finite simplicial complexes and regard as objects in
the PL category, or equivalently, the piecewise smooth category. An isomorphism between
two such graphs G1 and G2 is a (PL or piecewise smooth) homeomorphism from G1 to
G2 mapping the vertex set of G1 onto the vertex set of G2. If there exists an isomorphism
from a graph G1 to G2, then they are said to be isomorphic.
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Main Problem. For a finite and connected graph with at least one edge, can we construct
a smooth function on a (compact) manifold (satisfying some good conditions) whose Reeb
graph is isomorphic to the graph?

Paper [20] is pioneering on this topic. In [3, 12, 13, 18], some related studies, among
other, were conducted. The author also obtained results in [10] and [11].

Recently Reeb graphs and Reeb spaces also became important in applications of
mathematics such as data analysis and visualizations. This problem will play important
roles in such scenes, [19] is a related article.

1.2. Notions and notation for our Main Theorems. We introduce notions and
notation we need. The k-dimensional Euclidean space \BbbR k including the line (\BbbR := \BbbR 1)
and the plane (\BbbR 2) are simplest smooth manifolds. They are also Riemannian manifolds
endowed with the standard Euclidean metrics. The sphere Sk which is centered at the
origin of \BbbR k+1 and whose radius is 1 is the k-dimensional unit sphere. The disk Dk which
is centered at the origin of \BbbR k and whose radius is 1 is the k-dimensional unit disk.

A height function of the unit disk is a Morse function with exactly one singular point
p with i(p) = 0 in the interior. In other words, a height function is a smooth function
having the form (x1, \cdot \cdot \cdot , xm) \mapsto \rightarrow \pm \Sigma m

j=1xj
2 + c for suitable coordinates and a constant

value c \in \BbbR .

Definition 2. Let m \geq n \geq 1 be integers. A smooth map from an m-dimensional
manifold with no boundary into an n-dimensional manifold with no boundary is said to
be a fold map if:

(1) for each singular point p, there exists an integer satisfying 0 \leq i(p) \leq m - n+1
2 ;

(2) around each singular point p, the map has the form

(x1, \cdot \cdot \cdot , xm) \mapsto \rightarrow (x1, \cdot \cdot \cdot , xn - 1,

m - i(p) - n+1\sum 
j=1

xj+n - 1
2  - 

i(p)\sum 
j=1

xj+m - i(p)
2)

for suitable coordinates.

The case where the manifold of the target is the line \BbbR is for Morse functions on
manifolds with no boundaries. Together with Morse functions, we mainly consider Morse
functions on compact smooth manifolds with non-empty boundaries or non-compact
manifolds with no boundaries in the present paper.

Proposition 1. For a fold map in Definition 2, the following properties are satisfied.
(1) The integer i(p) is unique for any singular point p and the set of all singular

points of an arbitrary fixed i(p) is a smooth regular submanifold of dimension
n - 1 with no boundary. If the manifold of the domain is closed, then the set of
the singular points is compact.

(2) Furthermore, the map obtained by restricting the original map to the previous
(n - 1)-dimensional submanifold is a smooth immersion.

(3) Around each singular point, the fold map is locally represented as the product
map of a Morse function and the identity map on a small open neighborhood of
the singular point for suitable coordinates. Here the small open neighborhood is
chosen in the singular set.

In this proposition, we call i(p) the index of p.

Definition 3. A fold map is said to be special generic if the index of a singular point is
always 0.

For fundamental theory on singularity theory and differential topological properties of
fold maps, see [2, 16, 17, 18] for example.
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Definition 4. A continuous real-valued function g on a graph G is said to be good if it
is injective on each edge.

1.3. Main Theorems. In our arguments, for graphs, we consider a graph G with a
good function g and an integer valued function r on the edge set E of G. Note that we
do not consider the notion of an isomorphism and the notion of isomorphic graphs for
such graphs with functions. The triplet (G, g, r) is called a graph associated with a good
function g and a family r of integer labels to edges.

Main Theorem 1. Let G := (V,E) be a connected and finite graph satisfying E \not = \emptyset .
Let (G, g, rG) be a graph associated with a good function g and a family rG of integer
labels. Assume also that for each edge e \in E, either of the following two conditions holds:

\circ rG(e) \geq 0.
\circ rG(e) is even and negative.

Then there exist a 3-dimensional closed, connected and orientable manifold M and a
smooth function f : M \rightarrow \BbbR enjoying the following four properties.

(1) The Reeb graph Wf of f is isomorphic to G and we can take a suitable isomorphism
\phi : Wf \rightarrow G.

(2) For each point \phi (p) \in G (p \in Wf ) in the interior of an arbitrary edge e, the
preimage qf

 - 1(p) is a closed, connected, and orientable surface of genus rG(e) if
rG(e) \geq 0 and a non-orientable one of genus  - rG(e) if rG(e) < 0.

(3) For a point p \in M mapped by qf to a vertex vp := qf (p) \in Wf , we have
f(p) = g \circ \phi (vp).

(4) Around each singular point p, locally, the function has either of the following
forms.
(a) Assume that at the vertex qf (p), g does not have a local extremum. Then

the local function is a Morse function.
(b) Assume that the vertex qf (p) is of degree 1, that at the vertex, g has a local

extremum and that at the edge e containing the vertex, rG(e) = 0 is satisfied.
Then the local function is a height function.

(c) Assume that the vertex qf (p) is of degree greater than 1 and that g has a
local extremum there. Then the local function is the composition of a Morse
function with a height function.

(d) Assume that the vertex qf (p) is of degree 1 and that g has a local extremum
there. Assume also that at the edge e containing the vertex, rG(e) =  - 2 is
satisfied. In this case, the local function is obtained in the following way.

(i) Define a smooth function h of a well-known type and enjoying the
following properties: h(x) := 0 for x \leq 0 and h(x) := \epsilon he

 - 1
x for x > 0

with a real number \epsilon h > 0.
(ii) Consider a special generic map fp : \~S1 \times S2 \rightarrow \BbbR 2 on the total space

\~S1 \times S2 of a non-trivial smooth bundle over a circle whose fiber is
diffeomorphic to the 2-dimensional unit sphere enjoying the following
three properties.
(A) The restriction to the singular set is a smooth embedding.
(B) The image of the singular set is the disjoint union of two circles

centered at (0, 0) and of radii 1
2 and 3

2 , respectively.
(C) The image of the map is the closure of the domain surrounded by

the two embedded circles just before.
(iii) We consider the restriction of the previous map to the preimage of the

unit disk D2 \subset \BbbR 2. After that we compose this map with the height
function mapping (x1, x2) to x1

2 + x2
2.
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(iv) We compose the resulting function with a smooth function mapping
a real number x to \pm h(x - 1

4 ). h is as before. Furthermore, here the
domain is restricted suitably.

(v) We consider the sum of the previous function and a (suitable) real-
valued constant function. This is our desired local function.

Furthermore, for example, for this local function, the preimage of qf (p) is a
circle.

(e) Assume that the vertex qf (p) is of degree 1 and that g has a local extremum
there. Assume also that at the edge e containing the vertex, rG(e) \not = 0, - 2 is
satisfied. In this case, the composition of a fold map into the interior of the
unit disk with a height function is a desired local function. Furthermore, the
fold map is constructed as a map enjoying the following properties.

(i) Each connected component of the preimage of each point in the interior
of the unit disk of the target is either of the following three.
(A) A circle. This case is for connected components of the preimage

of each regular value or connected components of the preimage of
some singular value having no singular points.

(B) The bouquet of two circles. This case is for some connected
component of the preimage of some singular value.

(C) A 1-dimensional polyhedron obtained by an iteration of identifying
two points whose small open neighborhoods are homeomorphic to
an open interval in distinct connected 1-dimensional polyhedra,
starting from finitely many circles. This case is for some connected
component of the preimage of some singular value.

(ii) For the singular set of the fold map, remove suitable finitely many sin-
gular points and consider the restriction to the resulting 1-dimensional
manifold. Then we have an embedding. The finitely many singular
points removed before are all in the preimage of (0, 0) (where the space
of the target of the presented fold map is considered).

As Remark 1 says, it was announced that we could immediately show this. However,
we need additional arguments. As another result, we also show the following result.
Hereafter, let \sharp X denote the size of a finite set X.

Main Theorem 2. Let G := (V,E) be a connected and finite graph E \not = \emptyset . Let (G, g, rG)
be a graph associated with a good function g and a family rG of integer labels. We also
assume the following two conditions.

\bullet For each vertex v, the difference Dv := \sharp A\mathrm{u}\mathrm{p},v  - \sharp A\mathrm{l}\mathrm{o}\mathrm{w},v of the sizes of the two
following finite sets is even.

– The set A\mathrm{u}\mathrm{p},v of all edges satisfying the following conditions.
\ast e \in A\mathrm{u}\mathrm{p},v contains v as a point.
\ast The restriction of the function g to e \in A\mathrm{u}\mathrm{p},v has the minimum at v.
\ast rG(e) is odd and negative for e \in A\mathrm{u}\mathrm{p},v.

– The set A\mathrm{l}\mathrm{o}\mathrm{w},v of all edges satisfying the following conditions.
\ast e \in A\mathrm{l}\mathrm{o}\mathrm{w},v contains v as a point.
\ast The restriction of the function g to e \in A\mathrm{l}\mathrm{o}\mathrm{w},v has the maximum at v.
\ast rG(e) is odd and negative for e \in A\mathrm{l}\mathrm{o}\mathrm{w},v.

\bullet Let v be an arbitrary vertex of G satisfying Dv \not = 0 such that g does not have a
local extremum at v.

– Let Dv > 0. Let B\mathrm{l}\mathrm{o}\mathrm{w},v denote the set of all edges satisfying the following
conditions.

\ast e \in B\mathrm{l}\mathrm{o}\mathrm{w},v contains v as a point.
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\ast The restriction of the function g to e \in B\mathrm{l}\mathrm{o}\mathrm{w},v has the maximum at v.
\ast rG(e) is negative for e \in B\mathrm{l}\mathrm{o}\mathrm{w},v.

For e \in B\mathrm{l}\mathrm{o}\mathrm{w},v, define rG
\prime (e) as the greatest even number satisfying rG

\prime (e) \leq 
| rG(e)| . The sum \Sigma e\in B\mathrm{l}\mathrm{o}\mathrm{w},v

rG
\prime (e) satisfies Dv \leq \Sigma e\in B\mathrm{l}\mathrm{o}\mathrm{w},v

rG
\prime (e).

– Let Dv < 0. Let B\mathrm{u}\mathrm{p},v denote the set of all edges satisfying the following
conditions.

\ast e \in B\mathrm{u}\mathrm{p},v contains v as a point.
\ast The restriction of the function g to e \in B\mathrm{u}\mathrm{p},v has the minimum at v.
\ast rG(e) is negative for e \in B\mathrm{u}\mathrm{p},v.

For each edge e \in B\mathrm{u}\mathrm{p},v, define rG
\prime (e) as the greatest even number satisfying

rG
\prime (e) \leq | rG(e)| . The sum \Sigma e\in B\mathrm{u}\mathrm{p},vrG

\prime (e) satisfies | Dv| \leq \Sigma e\in B\mathrm{u}\mathrm{p},vrG
\prime (e).

Then there exist a 3-dimensional closed and connected manifold M and a smooth function
f : M \rightarrow \BbbR enjoying the properties (1)–(4) in Main Theorem 1.

1.4. Additional comments. Paper [10] concerns cases where the 3-dimensional mani-
folds and preimages of regular values are orientable. Main Theorems extend this and this
says that the author has a good idea for the present problem (Problem 3). Paper [18]
generalizes the main result of [10] partially and can be regarded as a paper motivated by
it. This also generalizes Main Theorems partially. More precisely, [18] generalizes the
manifold assigned to each edge to a general compact (closed) manifold. For edges con-
taining a vertex, the manifolds satisfy a condition from theory of cobordisms of manifolds
there. On the other hand, explicit classes of smooth functions are not considered and
used functions are essentially ones obtained by integrating smooth functions which are
not-real analytic.

In [10] and the present paper, explicit functions with mild singularities are used.
Moreover, other related studies introduced before are essentially ones for smooth

functions on surfaces or Morse functions such that preimages of regular values are disjoint
unions of spheres.

We prove Main Theorems in the next section.

2. Proofs of Main Theorems.

A proof of Main Theorem 1. We need to add several arguments to the proof of Theorem
1 of [10].

First we introduce several smooth functions. Let a < b be real numbers and \{ tj\} lj=1

be a sequence of real numbers in (a, b) of length l \geq 0 such that either of the following
holds: tj1 \leq tj2 for any pair j1 < j2 or tj1 \geq tj2 for any pair j1 < j2). Let \~f\mathrm{P},\{ tj\} ,[a,b]
denote a function satisfying the following six.

\circ The manifold of the domain is diffeomorphic to the manifold obtained in the
following way.

– Prepare a manifold represented as a connected sum of l copies of the real
projective plane.

– Remove the interiors of two copies of the 2-dimensional unit disk smoothly
and disjointly embedded in the previous manifold.

\circ The Reeb space is (PL) homeomorphic to a closed interval.
\circ The preimage of \{ a, b\} and the boundary of the manifold of the domain agree.
\circ There exist exactly l singular points. We can take the sequence \{ sj\} lj=1 of all

singular points so that \~f\mathrm{P},\{ tj\} ,[a,b](sj) = tj holds.
\circ Around each singular point, the function is locally a Morse function.
\circ Preimages of regular values are always circles.
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Let \~f\mathrm{K},\mathrm{u}\mathrm{p},t,[a,b] ( \~f\mathrm{K},\mathrm{l}\mathrm{o}\mathrm{w},t,[a,b]) denote a function on a 3-dimensional compact and con-
nected manifold satisfying the following:

\circ The function has exactly one singular point and t is the singular value. The
function is a Morse function there.

\circ The Reeb space is (PL) homeomorphic to a closed interval.
\circ The preimage of \{ a, b\} and the boundary of the manifold of the domain agree.
\circ The preimage of a (resp. b) is diffeomorphic to the 2-dimensional unit sphere.
\circ The preimage of b (resp. a) is diffeomorphic to the Klein bottle.

We also need several fundamental arguments on relationship among Morse functions
and singular points, and the manifolds, to know the existence of these functions. The
theory of so-called handles will help us to understand the structures of the presented
functions and other smooth functions in the present paper. In the proof of Main Theorem
2, we present the theory of handles in short with a short proof on the construction of
another new function \~f\mathrm{P},0,t,[a,b]. For systematic theory on relationship between handles
and singular points of Morse functions, see [14] for example.

We come back to the proof. Besides the original proof of Theorem 1 of [10], we need
construction of a local function around a vertex v \in V \subset G in the following four cases.

Case 1 We consider the following case.

\circ v is contained in some edge e satisfying rG(e) < 0.
\circ At v, g does not have a local extremum.

We consider a small regular neighborhood N(v) \subset G. We can regard this as a graph
whose edge set consists of closed intervals being subsets of edges of G and containing v.
Furthermore, this satisfies the following.

\circ Mutually distinct edges of the graph N(v) are always closed intervals in mutually
distinct edges of G.

\circ For each edge of G containing v, there exists a unique edge of N(v) being also a
closed interval in the edge of G.

By using methods of Michalak ([13]) and the author ([10]), we construct a local smooth
function \~fv,0 onto a small closed interval [g(v) - \epsilon v, g(v) + \epsilon v] enjoying the following five
properties where \epsilon v > 0 is a sufficiently small real number.

\circ \~fv,0 is a Morse function with exactly one singular value g(v).
\circ The preimage of \{ g(v) - \epsilon v, g(v) + \epsilon v\} and the boundary of the manifold of the

domain agree.
\circ The Reeb space W \~fv,0

has the structure of a graph such that the vertex set
consists of the following two.

– All elements in (
\=\~fv,0)

 - 1
(\{ g(v) - \epsilon v, g(v) + \epsilon v\} ).

– The unique element in (
\=\~fv,0)

 - 1
(g(v)).

There exists a suitable isomorphism \phi v,0 from the graph W \~fv,0
onto N(v) mapping

(
\=\~fv,0)

 - 1
(g(v)) \subset W \~fv,0

to the one-point set \{ v\} .
\circ Consider the edge e\prime \ni v of N(v) contained in the edge e of G. For each point

x \in e\prime  - \{ v\} , (\phi v,0 \circ q \~fv,0
)
 - 1

(x) is a closed, connected and orientable surface of
genus rG(e) if rG(e) \geq 0.

\circ Consider the edge e\prime \ni v of N(v) contained in the edge e of G. For each point
x \in e\prime  - \{ v\} , (\phi v,0 \circ q \~fv,0

)
 - 1

(x) is diffeomorphic to the 2-dimensional unit sphere
if rG(e) < 0.
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We change this function to a desired local smooth function \~fv. We can choose finitely many
trivial smooth bundles over the image [g(v) - \epsilon v, g(v) + \epsilon v] whose fibers are diffeomorphic
to the unit disk D2 disjointly and which are apart from the singular set of the function.
We apply such arguments throughout the present paper. We can do this is due to the
structures of Morse functions with a relative version of an important theorem in [1]. It
says that smooth submersions with compact preimages give smooth bundles. We can
attach new functions instead. We do this procedure according to the following rules and
steps around each edge of N(v).

\circ Around an edge e\prime \ni v of N(v) contained in the uniquely defined edge e of G
satisfying rG(e) < 0 and \=\~fv,0(e

\prime ) = [g(v) - \epsilon v, g(v)].
– We can choose | rG(e)| 

2 trivial smooth bundles over the image [g(v) - \epsilon v, g(v)+

\epsilon v] whose fibers are diffeomorphic to the unit disk D2 disjointly and which
satisfy the following conditions. We remove them.

\ast They are apart from the singular set of the function.
\ast For the total space Be\prime ,j of each of the | rG(e)| 

2 trivial smooth bundles

before, the image of the restriction of q \~fv,0
to Be\prime ,j

\bigcap \~fv,0
 - 1

([g(v)  - 
\epsilon v, g(v)]) is e\prime .

– We prepare a function \~f\mathrm{K},\mathrm{l}\mathrm{o}\mathrm{w},g(v),[g(v) - \epsilon v,g(v)+\epsilon v] before. We can choose a
trivial smooth bundle over [g(v) - \epsilon v, g(v) + \epsilon v] whose fiber is diffeomorphic
to the unit disk D2 and which is apart from the singular set. As before, we
can do this due to the structure of the function with the relative version of
the important theorem. We remove this and we have a new smooth function.

– We attach | rG(e)| 
2 copies of the previously constructed function here to

the function obtained first here. We glue the functions one after another
preserving the values at all points of the manifolds of the domains.

\circ Around an edge e\prime \ni v of N(v) contained in the uniquely defined edge e of G
satisfying rG(e) < 0 and \=\~fv,0(e

\prime ) = [g(v), g(v) + \epsilon v].
– We can choose | rG(e)| 

2 trivial smooth bundles over the image [g(v) - \epsilon v, g(v)+

\epsilon v] whose fibers are diffeomorphic to the unit disk D2 disjointly and which
satisfy the following conditions. We remove them.

\circ They are apart from the singular set of the function.
\circ For the total space Be\prime ,j of each of the | rG(e)| 

2 trivial smooth bundles

before, the image of the restriction of q \~fv,0
to Be\prime ,j

\bigcap \~fv,0
 - 1

([g(v), g(v)+

\epsilon v]) is e\prime .
– We prepare a function \~f\mathrm{K},\mathrm{u}\mathrm{p},g(v),[g(v) - \epsilon v,g(v)+\epsilon v] before. We can choose a

trivial smooth bundle over [g(v) - \epsilon v, g(v) + \epsilon v] whose fiber is diffeomorphic
to the unit disk D2 and which is apart from the singular set. We can do this
due to the structure of the function with the relative version of the important
theorem as before. We remove this and we have a new smooth function.

– As the first case here, we attach | rG(e)| 
2 copies of the previously constructed

function in the present case to the function obtained first in the present case.
We glue the functions one after another preserving the values at all points of
the manifolds of the domains.

Thus we have a desired local smooth function onto [g(v) - \epsilon v, g(v) + \epsilon v].

Hereafter, we omit rigorous notation and expositions on identifications of original abstract
graphs and Reeb graphs of local or global smooth functions. We naturally identify them
in similar arguments.
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Case 2 We consider the following case.
\circ v is of degree greater than 1.
\circ v is contained in some edge e satisfying rG(e) < 0.
\circ At v, the function g has a local extremum.

As in [10], we can construct a local function as Case 1 and we compose this with a
suitable smooth embedding into \BbbR 2. We can take the smooth embedding before as one
enjoying the following properties and we choose this as the embedding.

\circ The image is a parabola \{ (t, g(v)\pm t2) | t \in [ - \epsilon v, \epsilon v]\} \subset \BbbR 2 for a sufficiently small
positive number \epsilon v > 0.

\circ The embedding maps the unique singular value of the local function to (0, g(v)).
We compose the resulting map into the \BbbR 2 with the canonical projection to the second
component. By doing the construction of the smooth function like one in Case 1 suitably
first, we have a desired local function. We choose the sign + ( - ) according to the condition
that g(v) is the local minimum (resp. maximum) of g.

Case 3 We consider the following case.
\circ v is of degree 1.
\circ v is contained in the edge e satisfying rG(e) =  - 2.
\circ At v, the function g has a local extremum.

We can have a special generic map on the total space of a non-trivial smooth bundle
over a circle whose fiber is diffeomorphic to the 2-dimensional unit sphere into \BbbR 2. We
can construct one enjoying the following properties.

\circ The restriction to the singular set is a smooth embedding.
\circ The image of the singular set is the disjoint of the following two circles: they are

centered at (0, 0) and their radii are 1
2 and 3

2 , respectively.
\circ The image of the map is the closure of the domain surrounded by the previous

two embedded circles.
We consider the restriction of the map to the preimage of the unit disk D2 in \BbbR 2 and
compose this with a height function mapping (x1, x2) to x1

2 +x2
2. We compose this with

a smooth function mapping x to \pm h(x - 1
4 ) with the domain restricted suitably. Here

the sign + ( - ) is chosen according to the condition that g(v) is the local minimum (resp.
maximum) of g. We consider the sum of the resulting function and the constant function
whose values are always g(v). We thus have a desired local function.

Case 4 We consider the following case.
\circ v is of degree 1.
\circ v is contained in the edge e satisfying rG(e) \not =  - 2 and rG(e) =  - 2(l0 + 1) for a

positive integer l0 > 0.
\circ At v, the function g has a local extremum.

For this case, see also our proof of Theorem 1 in [10]. Arguments there are somewhat
similar. However, functions and maps are different in preimages for examples.

Let \epsilon v > 0 be a small real number. Let P be the surface of the domain of \~f\mathrm{P},\{ tj\} ,[ - \epsilon v,\epsilon v ]

such that \{ tj\} l0j=1 is of length l0 and defined in the following way.
\circ For l0 = 1, let tj = t1 := 0.
\circ For l0 > 1, let t1 :=  - \epsilon v

2 and tl0 := \epsilon v
2 and tj :=  - \epsilon v

2 + (j  - 1) \epsilon v
l0 - 1 for 1 < j < l0.

We can define \~f
\mathrm{P},\{ tj+ t+1

2 (tl0 - j+1 - tj)\} 
l0
j=1,[ - \epsilon v,\epsilon v]

for  - 1 \leq t \leq 1 and set

Fv,t := \~f\mathrm{P},\{ tj+ t+1
2 (tl0 - j+1 - tj)\} ,[ - \epsilon v,\epsilon v]
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for  - 1 \leq t \leq 1 suitably to define a smooth deformation Fv : P \times [ - 1, 1] \rightarrow \BbbR \times [ - 1, 1]
enjoying the following properties.

\circ Fv,t(x) = Fv(x, t) for (x, t) \in P \times [ - 1, 1].
\circ The singular set consists of all points of the form (st,j , t) where st,j is a singular

point of the Morse function Fv,t.
\circ On the interior of P \times [ - 1, 1], represented as \mathrm{I}\mathrm{n}\mathrm{t} P \times ( - 1, 1), the map Fv is a

fold map.
\circ For the fold map before, the restriction to the subset of the singular set obtained

by removing all singular points in the preimage of (0, 0) is a smooth embedding.
We consider the restriction of this map to the preimage of the following open disk:

the open disk is centered at (0, 0) and its radius is 1
2 . We compose the restriction with a

height function mapping (x1, x2) to \pm (x1
2 + x2

2). We consider the sum of the resulting
function and a constant function whose values are always g(v). Thus we have a desired
local function.

For a sufficiently small real number xg(v) > 0, the preimage of g(v)\pm xg(v) is diffeo-
morphic to a closed, connected and non-orientable surface obtained by identifying the
two connected components of the boundary of the surface of the domain of \~f\mathrm{P},\{ tj\} ,[a,b]
with l := 2l0. The genus is 2 + 2l0. The sign + ( - ) is chosen according to the condition
that g(v) is the local minimum (resp. maximum) of g.

For this exposition, see also [18]. This is on differential topological theory on structures
around preimages of smooth maps whose codimensions are  - 1. This is theory of so-called
fibers.

This completes the proof. \square 

Remark 1. In an earlier version of [10], it was announced that we immediately have a
similar answer to Problem 3 of [10]. However, the answer is not so trivial. In fact we
need Case 3 in our proof for example.

We prepare two important lemmas.

Lemma 1. Let m > 1 be an integer. Suppose there exist two smooth functions \~f1 and \~f2
on m-dimensional smooth, compact, and connected manifolds onto a small closed interval
[a - \epsilon a, a+ \epsilon a] enjoying the following three properties with a and \epsilon a > 0 being real numbers.

\circ \~f1 and \~f2 are both Morse functions with exactly one singular value a.
\circ The preimages of a - \epsilon a are diffeomorphic to closed manifolds F\mathrm{l}\mathrm{o}\mathrm{w},1 and F\mathrm{l}\mathrm{o}\mathrm{w},2

respectively. The preimages of a+ \epsilon a are diffeomorphic to closed manifolds F\mathrm{u}\mathrm{p},1

and F\mathrm{u}\mathrm{p},2 respectively.

\circ The preimages \=\~f1
 - 1

(a) and \=\~f2
 - 1

(a) are both one-point sets.

Then we have a smooth function \~f1,2 on an m-dimensional smooth, compact, and connected
manifold onto [a - \epsilon a, a+ \epsilon a] enjoying the following properties.

(1) \~f1,2 is a Morse function with exactly one singular value a.
(2) The preimage of a - \epsilon a is diffeomorphic to the disjoint union of F\mathrm{l}\mathrm{o}\mathrm{w},1 and F\mathrm{l}\mathrm{o}\mathrm{w},2.

The preimage of a+ \epsilon a is diffeomorphic to the disjoint union of F\mathrm{u}\mathrm{p},1 and F\mathrm{u}\mathrm{p},2.

(3) The preimage \=\~f1,2
 - 1

(a) is a one-point set.

Proof. Besides \~f1 and \~f2, we construct a similar smooth function \~f\mathrm{S} on an m-dimensional
smooth, compact and connected manifold onto the small closed interval [a - \epsilon a, a+ \epsilon a]
enjoying the following three properties. We can do this as in Case 1 of the proof of Main
Theorem 1.

\circ This is a Morse function with exactly one singular value a.
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\circ The preimages of a - \epsilon a and a+ \epsilon a are diffeomorphic to the disjoint union of two
copies of the (m - 1)-dimensional unit disk.

\circ The preimage \=\~f\mathrm{S}
 - 1

(a) is a one-point set.
For \~f\mathrm{S}, we can choose two trivial smooth bundles over the image [a - \epsilon a, a+ \epsilon a] whose
fibers are diffeomorphic to the unit disk Dm - 1 disjointly and which are apart from the
singular set of the function. We can do as in Case 1 of the proof of Main Theorem 1. We
can also choose them so that the following two conditions hold.

\circ The total spaces are mapped to the unions of two edges by the quotient map to
the Reeb space.

\circ The sets of the two edges are mutually disjoint for these two bundles.
We remove the interiors of the total spaces of the trivial bundles. We have a new function.
Note that the resulting Reeb space is regarded as a graph with exactly four edges.

For \~fj (j = 1, 2), we can choose a trivial smooth bundle over the image [a - \epsilon a, a+ \epsilon a]
whose fiber is diffeomorphic to the unit disk Dm - 1 and which is apart from the singular
set of the function similarly.

We remove the interiors as before. We have another two functions. We glue these three
resulting functions together to obtain a desired smooth function preserving the value at
each point as in Case 1 of the proof of Main Theorem 1. This completes the proof. \square 

Lemma 2. Let m > 1 be an integer. Suppose two smooth functions \~f1 and \~f2 on
m-dimensional smooth compact and connected manifolds onto a small closed interval
[a - \epsilon a, a+ \epsilon a] enjoying the following three properties exist where a and \epsilon a > 0 are real
numbers.

\circ \~f1 and \~f2 are both Morse functions with exactly one singular value a.
\circ The preimages of a - \epsilon a are diffeomorphic to closed manifolds F\mathrm{l}\mathrm{o}\mathrm{w},1 and F\mathrm{l}\mathrm{o}\mathrm{w},2

respectively. Let F\mathrm{l}\mathrm{o}\mathrm{w},1,0 \subset F\mathrm{l}\mathrm{o}\mathrm{w},1 and F\mathrm{l}\mathrm{o}\mathrm{w},2,0 \subset F\mathrm{l}\mathrm{o}\mathrm{w},2 be connected components
of the manifolds. The preimages of a+ \epsilon a are diffeomorphic to closed manifolds
F\mathrm{u}\mathrm{p},1 and F\mathrm{u}\mathrm{p},2 respectively.

\circ The preimages \=\~f1
 - 1

(a) and \=\~f2
 - 1

(a) are both one-point sets in the Reeb spaces.
Then we have a smooth function \~f1,2 on an m-dimensional smooth, compact and connected
manifold onto [a - \epsilon a, a+ \epsilon a] enjoying the following properties.

(1) \~f1,2 is a Morse function with exactly one singular value a.
(2) The preimage of a  - \epsilon a is diffeomorphic to the disjoint union of a manifold

diffeomorphic to F\mathrm{l}\mathrm{o}\mathrm{w},1  - F\mathrm{l}\mathrm{o}\mathrm{w},1,0, a manifold diffeomorphic to F\mathrm{l}\mathrm{o}\mathrm{w},2  - F\mathrm{l}\mathrm{o}\mathrm{w},2,0,
and a manifold represented as a connected sum of the two manifolds F\mathrm{l}\mathrm{o}\mathrm{w},1,0 and
F\mathrm{l}\mathrm{o}\mathrm{w},2,0: the connected sum is considered in the smooth category. The preimage
of a+ \epsilon is diffeomorphic to the disjoint union of F\mathrm{u}\mathrm{p},1 and F\mathrm{u}\mathrm{p},2.

(3) The preimage \=\~f1,2
 - 1

(a) is a one-point set.

Proof. Besides \~f1 and \~f2, we construct a similar smooth function \~f\mathrm{S},\mathrm{u}\mathrm{p} on an m-dimensional
compact, connected and smooth manifold onto the small closed interval [a - \epsilon a, a+ \epsilon a]
enjoying the following three. We can do this as in Case 1 of the proof of Main Theorem 1.

\circ This is a Morse function with exactly one singular value a.
\circ The preimages of a - \epsilon and a+ \epsilon are diffeomorphic to the (m - 1)-dimensional

unit sphere and the disjoint union of two copies of the (m - 1)-dimensional unit
sphere respectively.

\circ The preimage \=\~f\mathrm{S},\mathrm{u}\mathrm{p}
 - 1

(a) is a one-point set.
For \~f\mathrm{S},\mathrm{u}\mathrm{p}, we can choose two trivial smooth bundles over the image [a - \epsilon a, a+ \epsilon a] whose
fibers are diffeomorphic to the unit disk Dm - 1 disjointly and which are apart from the
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singular set of the function. We remove the interiors. We can do this as in Case 1 of the
proof of Main Theorem 1. We can also choose the trivial bundles so that the following
two properties hold.

\circ The two total spaces are mapped to the unions of two edges by the quotient map
to the Reeb space.

\circ The pairs of the two edges before are distinct for these two bundles.
We have one new function. Note that the resulting Reeb space is regarded as a graph
with exactly three edges.

We identify F\mathrm{l}\mathrm{o}\mathrm{w},1,0 \subset F\mathrm{l}\mathrm{o}\mathrm{w},1 and F\mathrm{l}\mathrm{o}\mathrm{w},2,0 \subset F\mathrm{l}\mathrm{o}\mathrm{w},2 with the preimages of a  - \epsilon for
functions \~f1 and \~f2 in a suitable way. We can choose a trivial smooth bundle over the
image [a - \epsilon a, a+\epsilon a] enjoying the following properties for j = 1, 2. We remove the interiors.
We can also do this as in Case 1 of the proof of Main Theorem 1 for j = 1, 2.

\circ The fiber is diffeomorphic to the unit disk Dm - 1.
\circ The fiber of this bundle is smoothly embedded in F\mathrm{l}\mathrm{o}\mathrm{w},j,0 \subset F\mathrm{l}\mathrm{o}\mathrm{w},j .
\circ The total space of the bundle is apart from the singular set of each of these two

functions.
We have another two functions.
Thus we have three functions. We can glue the resulting functions together to obtain

a desired smooth function preserving the value at each point as in Case 1 of the proof of
Main Theorem 1. This completes the proof. \square 

A proof of Main Theorem 2. We first define several smooth functions.
Let a < t < b be real numbers and let l > 0. Let \~f\mathrm{P},0,t,[a,b] denote a smooth function

on a 3-dimensional compact and connected manifold enjoying the following properties.
\circ The Reeb space is homeomorphic to a closed interval.
\circ The preimage of \{ a, b\} and the boundary of the manifold of the domain agree.
\circ The preimages of a and b are both diffeomorphic to the real projective plane.
\circ There exist exactly two singular points. t is the unique singular value.
\circ Around each singular point, the function is a Morse function.

We present the structure of such a function, since this needs a non-trivial argument. We
consider the product of a copy PS of the real projective plane and a closed interval [0, 1].
We attach a so-called 1-handle. It is diffeomorphic to D2\times [0, 1] \supset D2\times \{ 0, 1\} . We attach
this to a smoothly and disjointly embedded two copies of the unit disk D2 in PS \times \{ 0\} .
We also attach a so-called 2-handle. It is diffeomorphic to D2 \times [0, 1] \supset \partial D2 \times [0, 1]. We
can find a smoothly embedded surface which is diffeomorphic to \partial D2 \times [0, 1] and apart
from the two embedded copies of the disk D2 before, in PS \times \{ 0\} . We attach the 2-handle
to the surface. Furthermore, we can do this in such a way that the following properties
are satisfied.

\circ After removing the interior of the surface diffeomorphic to \partial D2 \times [0, 1] from
PS \times \{ 0\} , remaining two connected components are diffeomorphic to the 2-
dimensional unit disk and the Möbius band respectively.

\circ The two embedded copies of the disk D2 before are in different connected compo-
nents. This is a non-trivial argument on this construction and this produces a
desired function.

This exposition is based on well-known fundamental correspondence between singular
points of Morse functions and so-called (k-)handles where k is a non-negative integer
smaller than or equal to the dimension of the manifold of the domain. This exposition is
also used in the proof of our Main Theorems and propositions in [13]. (An earlier version
of) [10] adopts expositions using terminologies and notions of this theory. For this theory,
consult [14] as presented in the proof of Main Theorem 1.
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Let a < t < b be real numbers. Let \~f\mathrm{N},\mathrm{u}\mathrm{p},l,t,[a,b] ( \~f\mathrm{N},\mathrm{l}\mathrm{o}\mathrm{w},l,t,[a,b]) denote a function on a
3-dimensional compact and connected manifold enjoying the following properties. This
function can be also understood by a fundamental argument on 1-handles and we omit
the exposition.

\circ The Reeb space is homeomorphic to a finite and connected graph.
\circ The preimage of \{ a, b\} and the boundary of the manifold of the domain agree.
\circ The preimage of a (resp. b) is diffeomorphic to the disjoint union of l + 1 copies

of the real projective plane.
\circ The preimage of b (resp. a) is diffeomorphic to a closed, connected, and non-

orientable surface of genus 1 + l.
\circ There exist exactly l singular points. t is the unique singular value.
\circ Around each singular point, the function is locally a Morse function.

Proving that we can construct a desired local function around a vertex v in the following
cases and our proof of Main Theorem 1 will be completed.

Case 1 v is contained in some edge e \in A\mathrm{l}\mathrm{o}\mathrm{w},v or e \in A\mathrm{u}\mathrm{p},v. In addition at v, the
function g does not have a local extremum.

Case 2 v is contained in some edge e \in A\mathrm{l}\mathrm{o}\mathrm{w},v or e \in A\mathrm{u}\mathrm{p},v. In addition at v, the
function g has a local extremum.

We construct our desired local functions.

Part 1 Case 1.
We present the construction of Case 1. First take a sufficiently small real number

\epsilon v > 0. Hereafter, let Ev denote the set of all edges containing v. Let E\mathrm{l}\mathrm{o}\mathrm{w},v denote the
set of all edges containing v as the point at which the restrictions of the function g to the
edges have the maxima. Let E\mathrm{u}\mathrm{p},v denote the set of all edges containing v as the point at
which the restrictions of the function g to the edges have the maxima.

Part 1-1 The case where Dv = 0 (\sharp A\mathrm{u}\mathrm{p},v = \sharp A\mathrm{l}\mathrm{o}\mathrm{w},v).
First prepare \sharp A\mathrm{u}\mathrm{p},v = \sharp A\mathrm{l}\mathrm{o}\mathrm{w},v copies of the function \~f\mathrm{P},0,g(v),[g(v) - \epsilon v,g(v)+\epsilon v ] before.

Part 1-1-1 The case E\mathrm{l}\mathrm{o}\mathrm{w},v  - A\mathrm{l}\mathrm{o}\mathrm{w},v and E\mathrm{u}\mathrm{p},v  - A\mathrm{u}\mathrm{p},v are empty.
We can apply Lemma 1 one after another and apply Case 1 of the proof of Main Theorem
1 to complete the construction. The latter argument increases the genus of a closed,
connected and non-orientable surface in the preimage of a point in the interior of an edge
by 2. Note that here we regard the Reeb spaces naturally as graphs.

Part 1-1-2 The case where E\mathrm{l}\mathrm{o}\mathrm{w},v  - A\mathrm{l}\mathrm{o}\mathrm{w},v and E\mathrm{u}\mathrm{p},v  - A\mathrm{u}\mathrm{p},v are both non-empty.
We first construct a function as the previous case such that the Reeb space is homeo-
morphic to a graph with exactly 2\sharp A\mathrm{u}\mathrm{p},v vertices of degree 1, 1 vertex of degree 2\sharp A\mathrm{u}\mathrm{p},v

and 2\sharp A\mathrm{u}\mathrm{p},v edges. Only the preimage of the vertex of degree 2\sharp A\mathrm{u}\mathrm{p},v has some singular
points. The genus of each connected component of the preimage of each point in the
interior of each edge respects rG as the previous case.

E\mathrm{l}\mathrm{o}\mathrm{w},v  - A\mathrm{l}\mathrm{o}\mathrm{w},v and E\mathrm{u}\mathrm{p},v  - A\mathrm{u}\mathrm{p},v can be regarded to play roles played by E\mathrm{l}\mathrm{o}\mathrm{w},v and
E\mathrm{u}\mathrm{p},v in the case of Main Theorem 1. We restrict the original rG in a natural way and
apply the proof of Main Theorem 1 to obtain another function. We can then apply
Lemma 1 to these obtained two functions to complete the costruction.

Part 1-1-3 The case where either E\mathrm{l}\mathrm{o}\mathrm{w},v  - A\mathrm{l}\mathrm{o}\mathrm{w},v or E\mathrm{u}\mathrm{p},v  - A\mathrm{u}\mathrm{p},v is non-empty.
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We first construct a function as we do in Part 1-1-1 and Part 1-1-2. The Reeb space
is homeomorphic to a graph with exactly 2\sharp A\mathrm{u}\mathrm{p},v vertices of degree 1, exactly 1 vertex
of degree 2\sharp A\mathrm{u}\mathrm{p},v and exactly 2\sharp A\mathrm{u}\mathrm{p},v edges. Only the preimage of the vertex of degree
2\sharp A\mathrm{u}\mathrm{p},v has some singular points. The genus of each connected component of the preimage
of each point in the interior of each edge respects rG as we do in Part 1-1-1 and Part
1-1-2.

We choose the empty set between E\mathrm{l}\mathrm{o}\mathrm{w},v  - A\mathrm{l}\mathrm{o}\mathrm{w},v and E\mathrm{u}\mathrm{p},v  - A\mathrm{u}\mathrm{p},v. We replace the
chosen set by a one-element set. We have two sets: one of them does not change and the
other is the one-element set. Note that we can argue similarly in both cases here.

The resulting two sets can be regarded play roles played by E\mathrm{l}\mathrm{o}\mathrm{w},v and E\mathrm{u}\mathrm{p},v in the
case of Main Theorem 1. We restrict the original rG in the natural way and define the
value at the element of the one-element set before as 0. After that we apply the proof of
Main Theorem 1 as before. We can then apply Lemma 2 in a suitable way to complete
the construction.

This completes the construction of a desired function in Part 1-1.

Part 1-2 The case where Dv \not = 0 (\sharp A\mathrm{u}\mathrm{p},v \not = \sharp A\mathrm{l}\mathrm{o}\mathrm{w},v).
Without loss of generality, we may assume \sharp A\mathrm{u}\mathrm{p},v > \sharp A\mathrm{l}\mathrm{o}\mathrm{w},v.
By the assumption on Dv and rG

\prime (e) for e \in B\mathrm{l}\mathrm{o}\mathrm{w},v, we can choose some edges of
B\mathrm{l}\mathrm{o}\mathrm{w},v, define the subset C\mathrm{l}\mathrm{o}\mathrm{w},v \subset B\mathrm{l}\mathrm{o}\mathrm{w},v, and choose an even integer rG

\prime \prime (e) > 0 for
e \in C\mathrm{l}\mathrm{o}\mathrm{w},v under the following rules.

\circ \Sigma e\in C\mathrm{l}\mathrm{o}\mathrm{w},v
rG

\prime \prime (e) = Dv.
\circ rG

\prime \prime (e) \leq rG
\prime (e).

We prepare a copy of the function \~f\mathrm{N},\mathrm{l}\mathrm{o}\mathrm{w},rG\prime \prime (e) - 1,g(v),[g(v) - \epsilon v,g(v)+\epsilon v ] before for e \in C\mathrm{l}\mathrm{o}\mathrm{w},v.
To construct a smooth function we do the following procedure.

\circ We remove Dv edges in A\mathrm{u}\mathrm{p},v from E\mathrm{u}\mathrm{p},v, without changing E\mathrm{l}\mathrm{o}\mathrm{w},v. A\mathrm{u}\mathrm{p},v
\prime denotes

the subset of A\mathrm{u}\mathrm{p},v obtained after the Dv edges being removed.
\circ We restrict rG to the set of edges obtained after the Dv edges being removed. We

change the values of rG on A\mathrm{u}\mathrm{p},v
\prime \sqcup A\mathrm{l}\mathrm{o}\mathrm{w},v to  - 1 and those on ((B\mathrm{u}\mathrm{p},v  - (A\mathrm{u}\mathrm{p},v  - 

A\mathrm{u}\mathrm{p},v
\prime ))\sqcup B\mathrm{l}\mathrm{o}\mathrm{w},v) - (A\mathrm{u}\mathrm{p},v

\prime \sqcup A\mathrm{l}\mathrm{o}\mathrm{w},v) to 0 and do not change the values elsewhere.
Let \~rG denote the resulting function on the resulting set of these edges. We can
also have a new good function \~g canonically.

Respecting this new graph associated with the new good function \~g and the family
\~rG of integer labels, we construct a desired function as in Part 1-1. Let \~fDv,0 denote the
resulting function.

We apply Lemma 2 one after another. At the j-th step, we do the following two where
we do this for 1 \leq j \leq \sharp C\mathrm{l}\mathrm{o}\mathrm{w},v.

\circ Define the preimage of g(v) - \epsilon v for the copy of the function \~f\mathrm{N},\mathrm{l}\mathrm{o}\mathrm{w},rG\prime \prime (ej) - 1,g(v),[g(v) - \epsilon v,g(v)+\epsilon v ]

before for the j-th edge ej \in C\mathrm{l}\mathrm{o}\mathrm{w},v. This is for the connected component identified
with F\mathrm{l}\mathrm{o}\mathrm{w},1,0 in the situation of Lemma 2.

\circ Consider the intersection of the preimage of g(v)  - \epsilon v and the preimage of ej
for the quotient map onto the Reeb space of the function \~fDv,j - 1. This can be
regarded as the connected component identified with F\mathrm{l}\mathrm{o}\mathrm{w},2,0 in the situation
of Lemma 2. We regard the intersection before as the connected component
identified with F\mathrm{l}\mathrm{o}\mathrm{w},2,0 in Lemma 2.

\circ We apply Lemma 2 and define \~fDv,j as the resulting function.
We have a function \~fDv,\sharp C\mathrm{l}\mathrm{o}\mathrm{w},v

. Last we apply arguments in Case 1 of the proof of Main
Theorem 1. For any integer ke \geq 0, this can decrease the Euler number of the preimage
for each edge e in the resulting Reeb space, regarded as a graph in a natural way, by 2ke.
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By virtue of definitions of notions, conditions and properties related to C\mathrm{l}\mathrm{o}\mathrm{w},v, rG, \~rG,
rG

\prime and rG
\prime \prime , this completes the proof.

More precisely, for e \in C\mathrm{l}\mathrm{o}\mathrm{w},v

\bigcap 
A\mathrm{l}\mathrm{o}\mathrm{w},v, we have

 - 1 - rG
\prime \prime (e) \geq  - 1 - rG

\prime (e) = rG(e)

and for e \in C\mathrm{l}\mathrm{o}\mathrm{w},v

\bigcap 
(B\mathrm{l}\mathrm{o}\mathrm{w},v  - A\mathrm{l}\mathrm{o}\mathrm{w},v), we have

0 - rG
\prime \prime (e) \geq 0 - rG

\prime (e) = rG(e)

as inequalities. This implies that applying the arguments in Case 1 of the proof of
Main Theorem 1 to edges (if we need) completes the proof. We can show similarly if
\sharp A\mathrm{u}\mathrm{p},v < \sharp A\mathrm{l}\mathrm{o}\mathrm{w},v. We use \~f\mathrm{N},\mathrm{u}\mathrm{p},rG\prime \prime (e) - 1,g(v),[g(v) - \epsilon v,g(v)+\epsilon v] instead for example.

This completes the construction of a desired function of Part 1-2.

Part 2 Case 2.
We present the construction of Case 2. We apply technique in Case 2 of the proof

of Main Theorem 1. We first construct a local function as in Part 1. We can and must
construct the map regarding "\sharp A\mathrm{u}\mathrm{p},v = \sharp A\mathrm{l}\mathrm{o}\mathrm{w},v" there by the conditions on rG. We can
apply the presented technique to complete the construction.

Last, we glue the local functions as in the proof of Main Theorem 1.
This completes the proof. \square 

We end the present paper by the following remark.

Remark 2. In obtaining results similar to Main Theorems, for example, the first con-
straint that Dv is even in Main Theorem 2 is a necessary condition. This is due to
constraints from the cobordism theory of closed manifolds. Consult [18].

There remain several cases satisfying the condition on this theory. For example,
consider the following case for a vertex v.

(1) Ev consists of exactly 3 edges.
(2) E\mathrm{u}\mathrm{p},v consists of exactly 2 edges. The values of rG there are odd and negative.
(3) At the unique edge of E\mathrm{l}\mathrm{o}\mathrm{w},v, the value of rG is non-negative.

By fundamental discussions on handles we can see that we cannot construct Morse
functions. In the situation of [18], we have a positive result. On the other hand, we do
not use explicit functions such as Morse(-Bott) functions there.

Remark 3. In Main Theorems, functions we have obtained are Morse functions around
singular points where the functions do not have local extrema. Related to Remark 2, we
do not know whether we can weaken the conditions on the family rG of integer labels or
preimages of regular values to obtain a Morse function.
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